

Scanning Light Curtain MLVT

beam spacings 7,5 mm and 14 mm

scanning field up to 1,9 m x 20 m

constructional lengths in steps of 100 mm

high speed scanning, reaction time from 1,2 ms, depending from constructional lengths

serial communications interface - SPS or IPC

FIESSLER

ELEKTRONIK

section	Contents
1.	Functional principle
2.	Application areas
3.	Features
3.1	operational data
3.2	physical dimensions
3.3	scanning area, resolution, order codes
4.	Commissioning
4.1	mounting and adjustment
4.2	connectors
4.3	pin configuration
4.4	connection examples
4.4.1	MLVT single system
4.4.2	several MLVTs in a network
4.5	function test
5.	Operating modes (mensuration data scanning)
5.1	operating mode "number of covered eyes"
5.2	operating mode "topmost covered eye"
5.3	operating mode "lowest (bottom) covered eye"
5.4	operating mode "status of all eyes as reference bit pattern"
5.5	operating mode "first free eye"
5.6	example of data displaying
6.	Different ways of data output (communication)
6.1	defined data output by random requisition byte
6.2	data output depending on requisition byte
6.3	defined data output by defined requisition byte
6.4	permanent data output (polling)
7.	Programming
7.1	preparation
7.2	short description of re-programming
7.3	detailed description of re-programming procedures
7.3.1	defined data output by random requisition byte
7.3.2	data output depending on requisition byte
7.3.3	permanent data output
7.3.4	defined data output by defined requisition byte
8.	Serial interface
8.1	RS 485
8.1.1	interface
8.1.2	bus system
8.1.3	pin configuration
8.2	RS 232 protocol
9.	Cleaning
10.	Summarization of specifications
11.	Appendix
11.1	conversion table

1. Function Principle and 2. Application Areas

1. Function Principle

The transmitter generates infrared light beams that are permanently flashing at high speed. The parallel light beams (beam spacing 7,5mm or 14 mm) are evaluated in the receiver in synchronous action with the transmitter. This evaluation of the beams is carried out by photo diodes, in the following referred to as "elements" or "eyes". The receiver is optically synchronized to the transmitter by means of a so-called synchronizing eye, which is located within the scanning field on the plug end of the units (see drawing). This synchronizing eye must remain uncovered during the whole scanning procedure.

The eyes are checked one after the other, whether all beams are free of whether they are interrupted by an obstacle. During this checking, a monitoring of the current status of all eyes is carried out. The obtained data are ready to be retrieved via the serial interface. The presence on any obstacle within the scanning field will activate both receiver outputs.

2. Areas of Application

The scanning light curtain MLVT scans and measures non-transparent objects that are placed within the scanning field. Due to the parallel scanning method, there is no geometric error of measurement like it occurs when, during the mensuration procedure, a camera is used for scanning. With a beam spacing (see below) of 7,5mm /14 mm and a scanning field height of up to 1,9m x 20m, this light curtain can be used very flexibly for various applications. The MLVT provides 5 different operating modes (numbers of covered eyes, first (topmost) covered eye, lowest (bottom) covered eye, first free eye, status of all eyes as reference bit pattern). The obtained data are produced via an RS 485 interface on demand or by permanent data output. A detailed description of the different operating modes is provided in section 5.

IF I

ESSLER

3. Features

3.1 Operational Data

The scanning light curtains MLVT are characterized by the following features:

- beam spacing only 7,5mm (0,29 in.)
- short response times from 1,0ms up to 10,3ms, depending on their respective constructional lengths
- scanning field heights from 100 up to 1900 mm in steps of 100 mm available
- small guards/valves directly connectable to 2 short-circuit safe, non-equivalent semiconductor outputs PNP (connecting capacity 0,5A/24V)
- protective sytem IP 65
- 7m scanning range with beam spacing 7,5 mm
- 24m scanning range with beam spacing 14 mm
- serial interface (RS 485) for IPC or SPS, interface converter available as option

3.2 Physical Dimensions

MLVT housings (transmitter and receiver)

Aluminium profile, plastic coated RAL 1020 yellow, end pieces made from non-corrosive, spherically reinforced plastic (polyamide). Plexiglass light outlet and inlet, optionally available with solvet-resistant silicate glass windows.

The required scanning field heights can be looked up in table in section 3.3.

Insulating Brackets

Insulating plastic layers and rings provided as additional insets to be mounted at the receiver brackets. These enhance the electromagnetic compatibility of the MLVT when it is used in an area where electromagnetic interferences may occur.

omponente "Bild S4R23 Typ "TIFF" 01140017.tif

3. Features

3.3 Scanning Area dimensions, Resolution, Order Codes

			resolution 14 mm			resolution 30 mr	n
scanning	constr.	order code	* response time of	* * availability of	order codes	* response time of	* * availability of
field height	length		switching outputs	obtained data		switching outputs	obtained data (worst
(mm)	(mm)	range 7 m	("worst Case")	("worst Case")	range 24 m	(worst Case)	Case)
		-	in ms	in ms	-	in ms	in ms
100	196	MLVT100 / 13	1,2	2,4	MLVT100 / 7	0,9	2,0
200	296	MLVT200 / 26	1,7	3,4	MLVT200 / 14	1,2	2,4
300	396	MLVT300 / 39	2,2	4,4	MLVT300 / 21	1,5	3,0
400	496	MLVT400 / 52	2,7	5,4	MLVT400 / 28	1,8	3,6
500	596	MLVT500 / 65	3,2	6,4	MLVT500 / 35	2,0	4,0
600	696	MLVT600 / 78	3,7	7,4	MLVT600 / 42	2,3	4,6
700	796	MLVT700 / 91	4,2	8,4	MLVT700 / 49	2,5	5,0
800	896	MLVT800 / 104	4,7	9,4	MLVT800 / 56	2,9	5,8
900	996	MLVT900 / 117	5,2	10,4	MLVT900 / 63	3,1	6,2
1000	1096	MLVT1000 / 130	5,7	11,4	MLVT1000 / 70	3,4	6,8
1100	1196	MLVT1100 / 143	6,2	12,4	MLVT1100 / 77	3,7	7,4
1200	1296	MLVT1200 / 156	6,8	13,6	MLVT1200 / 84	3,9	7,8
1300	1396	MLVT1300 / 169	7,3	14,6	MLVT1300 / 91	4,2	8,4
1400	1496	MLVT1400 / 182	7,8	15,6	MLVT1400 / 98	4,5	9,0
1500	1596	MLVT1500 / 195	8,3	16,6	MLVT1500 / 105	4,8	9,6
1600	1696	MLVT1600 / 208	8,8	17,6	MLVT1600 / 112	5,0	10,0
1700	1796	MLVT1700 / 221	9,3	18,6	MLVT1700 / 119	5,3	10,6
1800	1896	MLVT1800 / 234	9,8	19,6	MLVT1800 / 126	5,3	11,2
1900	1996	MLVT1900 / 247	10,3	20,6	MLVT1900 / 133	5,9	11,8

* maximum capture and response time = minimum sojourn time of the object in the scanning field until reaction of light curtain outputs. ** maximum response time from alteration of scanning field until data output

4. Commissioning

4.3 Mounting of transmitter and receiver

When installing the transmitter and receiver of the MLVT, it must be ensured that the connectors of both devices are located at the same side. Transmitter and receiver must be installed with **parallel** faces.

Swivelling along the longitudinal and lateral axis

Attachment and adjustment

The supplied fastening brackets serve for the attachment and the adjustment of the light barrier. Together with the shifting tenon blocks, the brackets enable a multi-functional attachment.

To swivel along the longitudinal axis, turn the respective adjusting screw on one of the fastening brackets whilst both screws on the other fastening bracket are loose. To swivel along the lateral axis, turn both screws of one fastening bracket at the same time whilst both screws on the other fastening bracket are loose.

Rubber-metal connection

In the event of intense vibrations, please use rubber-metal connections which can be obtained as optional accessories.

Insulating layers

Insulating plastic layers and rings provided as additional insets to be mounted at the receiver brackets. These enhance the electromagnetic compatibility of the MLVT when it is used in an area where electromagnetic interferences may occur.

4. Commissioning

4.2 Connectors

The product standard of the series MLVT includes an extra flat plug-in connector that is located in the connection lid. Its cover may be removed without cutting the connection cable plug. The housing itself remains tightly closed. As option, several standard connection plugs are availabe.

The transmitter is connected via one 3-pin cable and the receiver via one 7-pin cable.

4.3 Pin configuration

The connection is carried out according to the following diagram. The non-equivalent PNP-ports are short-circuit-safe and can be connected independently from each other.

The switching capacity of 0,5A/24V permits the direct connection of small guards, relays or SPC.

If the scanning field is free, the PNP port "free" (connection 1) is conducting and the PNP port "interrupted" (connection 2) is not conducting.

If the scanning field is interrupted, the PNP port "interrupted " is conducting and the PNP port "free" is not conducting.

Serial port RS485: 2-core cable simplex connection. Connection 3 is B (+), connection 4 is A (-).

Caution! Ports 3 and 4 are no fail-safe outputs.

4. Commissioning

4.4.1 MLVT as single system

ELEKTRONIK

Our connection example shows one MLVT receiver connected either to an SPC, or to a profibus gateway, or to an interface converter. A termination (see section 8.1.3) is urgently required when using the RS485 connection. The MLVT (receiver) therefore disposes of a terminating resistor (150 Ohms) which can be activated by the corresponding setting of a DIP-switch (see section 4.2).

At the other side of the MLVT, where the SPC, the "Profibus Gateway" or the interface converter are connected, there is another terminating network that can be hooked up. If not, an external network (see below) must be elaborated.

4.4.2 Several MLVTs in a network

Another example shows several MLVTs connected to an SPC, to a Gateway profibus, or to an interface converter. In this case, a termination is required only for the physically first and last device.

SPC / Gateway Profibus / interface converter

F.

ESSLER

4. Commissioning

4.5 Function Test

For the initial commissioning it is sufficient to provide a voltage of 24V DC +/-20% for both transmitter and receiver. If the adjustment procedure has been carried out correctly (see section 4.1), the green LED at the receiver and the orange-coloured LCD at the transmitter light up if the scanning field is free.

In case of slight de-adjustment of both devices, the orange-coloured LED at the receiver will light up additionally (adjustment LED). In order to dispose of a certain light reserve, (the presence of dirt on the plexiglass windows may lead to a certain weakening of the scanning signal) it is in any case imperative to adjust the devices in a way that the orange LED at the receiver will extinguish and only the green LED lights up.

If the adjustment of the devices is carried out correctly, only the green LED on the receiver will light up if the scanning field is free.

If the scanning field is interrupted, the orange-coloured LED will light up together with the red LED.

If the orange-coloured LED and the red LED of the receiver device are lit, even if the scanning field is free, check if the adjustment of both devices is carried out correctly (see section 4.1).

5. Operating Modes

5.1 operating mode "number of covered eyes"

All covered receiver elements (=eyes) are counted and added, regardless of the number of objects placed into the scanning field or their positions within the field. Our example shows two objects placed in the scanning field, covering a total of 10 eyes.

Select this operating mode for e.g. the mensuration of the dimensions of an object. Combined to a second MLVT, even two-dimensional measurements are possible.

38 37 36 35 34 33 32 3<mark>1 30 29 28</mark> 27 29</mark>25 24 23 22 2120 19 18 17 16 15 14 13 1<u>2</u>

1

This mode displays only the position of the topmost covered eye. (the highest of all numbers of the covered eyes). The numbering of the eyes starts at the end of the unit that has no plug. The example shows: obtained mensuration reading: 30.

This mode is selected for special applications during levelling or contour scans.

5. Operating Modes

5.3 operating mode "lowest (bottom) covered eye"

This mode displays only the position of the lowest covered eye. (smallest of all numbers of the covered eyes).

5.4 operating mode "status of all eyes as reference bit pattern"

This mode displays the conditions of all eyes along with their respective positions. Depending on the length of the light barrier, more than one byte can be obtained as a result. One after the other, the obtained results are transmitted byte perbyte as bit patterns. One free eye signifies: binary "1", a covered eye is a binary "0".

The first byte displays the position of the lowest (first) 8 eyes. The lowest bit position in the byte corresponds to the first eye. The second byte represents the positions of the next 8 eyes, i.e. eyes number 9 through 16, and so on. If, for the representation of the last eyes, no complete byte is needed, the remaining bits are addressed as "0".

Example: MLVT receiver 600/78

ELEKTRONIK

As a practicable application, the scanning of a grid-shaped object is possible.

5. Operating Modes

5.5 operating mode "first free eye"

ELEKTRONIK

This operating mode monitors the position of the first free eye. The mensuration starts at the starts at the end of the unit that has no electrical connector. The example shows the utilization of the MLVT as hole detecting device. During this application it must be opserved that the synchonizing eye (the one closest to the plug) must remain free at all times.

5.6 Example for readings output

The following example shows an MLVT 300 light barrier with an object placed into the scanning field. The following mensuration readings are obtained:

covered number of eyes topmost covered eye lowest covered eye first free (=uncovered) eye all eyes

= 10d (d = decimal code)
= 30d
= 21d
= 1d
= 00111111b (b = binary code), 11000000b, 00001111b, 1111111b, 1111111b

6. Different ways of Data Output (Communication)

The MLVT produces the obtained mensuration readings via a serial interface (RS 485). As option, these light curtains can be connected via an external converter to a serial RS 232 interface, or to a profibus-DP fieldbus. The user may choose from different operating and scanning modes, e.g. permanent output (polling mode) or data output via PC or SPC using one byte as requisition byte. For these modes, there is no need for a special protocol to be elaborated. The transmission parameters are: 9600, N, 8, 1 (Baud, No Parity, Data bits, Stop bit).

6.1 Determined data output by using random requisition byte

If there is no fixed value (byte) for the data transfer, this operating mode provides a special possibility for data output using a randomly chosen requisition byte. Our example shows the operating mode "number of covered eyes".

6.2 data output on demand according to individual requisition bytes

If different mensuration procedures are carried out by the MLVT, this mode provides the possiblility to display the obtained data of the various mensurations according to their individual requisition bytes.

RONIK

ЕКТ

ΕL

6. Different ways of Data Output (Communication)

6.3 Determined data output by using pre-defined requisition byte

The RS485 interface is laid out as a bi-directional bus-system for up to 32 extensions. The user may apply up to 6 different adresses in order to directly actuate the MLVT unitis. Here, hoewevewr, the operating mode " Status of all elements as reference bit pattern" is not available.

6.4 Permanent data output (polling)

This operating mode enables permanent data output without the use of any requisition byte. Here, hoewevewr, the operating mode "Status of all elements as reference bit pattern" is not available.

By using the different programming possibilities, the user may choose from 5 different modes of mensuration data coverage (operating modes) and 4 output modes, which will remain stored even after a power failure. Usually, the programming of the MLVT units is carried out during their manufacturing process according to the customer's directions. Programming, however, may be altered by the customer anytime.

7.1 Preparation

ELEKTRONIK

Any re-programming can be carried out by using a PC, with a serial terminal software and an interface converter (RS 232 <-> RS 485), which enables a data link between the COM-Port of the PC and the RS 485 output of the MLVT. Re-programming can also be carried out anytime via an IPC, an SPC etc.

Depending on the data output mode carried out previously, the light curtain can be programmed either during operation (mode: "data output on requisition") or after having carried out a re-start procedure (during operating mode "permanent data output").

7.2 Short description of re-programming

First of all, the MLVT requires the entry of the password as a 4-digit byte sequence (109d,108d,118d,116d). This can be carried out during the regular operation of the MLVT. However, if the light curtain has been previously set on "permanent data output" mode, " this can only be achieved after a voltage reset (short interruption of the power supply of the MLVT). The time period between entering the bytes, i.e. until entering the first byte, must never exceed 2,5 seconds. To terminate the programming, look up the terminating byte in the center column of the table shown below and enter it into the MLVT. If the entry procedure is carried out faulty or if the maximum allowable time period of 2,5 s is exceeded, the light curtain will automatically return to the previously programmed data output mode. Then the programming procedure must be repeated.

Output possibilities of mensuration data	The following 4 bytes are transmitted to the MLVT, the fifth byte (closing byte) taken from the data in this column defines the data output mode and terminates the re-programming procedure. 109,108,118,116,					requisition byte for mensura- tion data output
	total number of covered ey- es	topmost cove- red eye (decimal value)	lowest (bottom) covered eye (decimal value)	first free eye (decimal value)	status of sll free eyes as bit pattern(decimal value)	
	(decimal value)	(,				
defined mensuration output by randomly chosen requisition byte	128	32	64	50	96	any byte (any caracter)
	16	-	-	-	-	128
mensuration data output :	-	16	-	-	-	32
according to the	-	-	16	-	-	64
requisition byte	-	-	-	16	-	50
	-	-	-	-	16	96
	12	17	22	51	-	248
determined mensuration output	13	18	23	52	-	249
by pre-defined requisition byte	4	36	68	53	-	250
(address byte)	133	37	69	54	-	251
	6	38	70	55	-	252
	7	39	71	56	-	253
permanent data output withoutrequisition byte	8	40	72	57	-	-

7.3 Detailed description: re-programming

ELEKTRONIK

Basic requirement is the presence of a communication link (as described in chapter 4.1). The MLVT program is pre-set on the mensuration data output mode "topmost covered eye, permanent data output". The RS 485 interface at the light curtain is laid out as a two-wire system, i.e. data input and data output (half-duplex) are carried out hrough the same line. Therefore, a reprogramming during operation (under permanent data output) is not possible.

If a re-programming is needed, this can only be achieved after a voltage reset (short interruption of the power supply of the MLVT). After that, the interface will turn to "data input" for about 2,5 s. The re-programming byte sequence can be looked up in in the center column of the tables shown in the following.

If, during the entry procedure the allowable time period of 2,5 s (before and between the bytes) is exceeded, or if a wrong byte is used, the light curtain will automatically return to the previously programmed data output mode. Then the programming procedure must be repeated.

If programming has been completed correctly, the mensuration data can be retrieved immediately by entering the corresponding requisition byte (see right column of the table), i.e. during permanent data output, the obtained mensuration data will be displayed continuously. Our example shows the MLVT programmed to a determined data output (status of all eyes as reference bit pattern) by a requisition byte randomly chosen.

7.3.1 determined data output by any requisition byte

This output mode requires a pre-selection of the mensuration data to be displayed and its programming. The left column of the table below provides a selection of possible mensuration data output possibilities. Every output pattern is related to a special by-te sequence (center column). **One** of these sequences is selected and transmitted to the MLVT for programming it. After that, the mensuration data can be retrieved by entering any non-defined (randomly chosen) byte as requisition byte.

available mensuration data output possibili- ties	required byte sequence for programming the desired operating mode into the MLVT (decimal values)	requisition byte for men- suration data retrieval
status of all eyes as reference bit pattern	109 108 118 116 96	
lowest (bottom) covered eye	109 108 118 116 64	
topmost covered eye	109 108 118 116 32	any byte
total number of covered eyes	109 108 118 116 128	
first free eye	109 108 118 116 50	

7.3.2 Data output depending on requisition byte

This operating mode permits the retrieval of the four mensuration data by using the corresponding requisition byte. For this purpose, the byte sequence shown in the center column of the table mentioned below is transmitted to the MLVT. Afterwards, the mensuration data can be obtained by using their corresponding requisition byte (see right colum).

available mensuration data output possibili- ties	required byte sequence for programming the desired operating mode into the MLVT	requisition byte for men- suration data retrieval
	(decimal values)	(decimal values)
status of all eyes as reference bit pattern		96
lowest (bottom) covered eye		64
topmost covered eye	109 108 118 116 16	32
total number of covered eyes		128
first free eye		50

7.3.3 Permanent data output

ELEKTRONIK

This operating mode permits the permanent retrieval of the mensuration data without using any requisition byte. However, here the operating mode "status of all eyes as reference bit pattern" is not possible.

If a re-programming of the MLVT during selected operating mode "permanent data output" is needed, this can only be achieved after a voltage reset (short interruption of the power supply of the MLVT). In this case, the allowable time period of 2,5 s between the programming of the first 4 characters (bytes) must not not exceed 2,5s.

If, during the entry procedure, the allowable time period of 2,5 s between the first 4 characters (bytes) for the programming is exceeded, or if a wrong byte is used, the light curtain will remain in the previously programmed data output mode and will return into operational readibness.

available mensuration data output possibili- ties	required byte sequence for programming the desired operating mode into the MLVT (decimal values)	permanent data output without using any requisi- tion byte
total number of covered eyes	109 108 118 116 8	-
topmost covered eye	109 108 118 116 40	-
lowest (bottom) covered eye	109 108 118 116 72	-
first free eye	109 108 118 116 57	-
status of all eyes as reference bit pattern	not available	-

ESSLER

ELEKTRONIK

F

7.3.4 Determined data output by pre-defined requisition byte (address byte)

This operating mode is applied if the MLVT is operated in connection to a bus system with several extensions. Using this operating mode it must be made sure that every single MLVT at the same bus is programmed to a different address in order to avoid data collision! Due to this fact, only one single light curtain must be connected to the PC (IPC, SPC etc.) during the programming procedure for defining mensuration data output. The following table provides the available mensuration data output possibilities and their according byte sequences that are transferred to the MLVT.

After that, the light curtain can be addressed with the corresponding address, and data can be obtained. Here, hoewevewr, the operating mode " Status of all elements as reference bit pattern" is not available.

available mensuration data output possibili- ties	required byte sequence for programming the MLVT to the desired operating mode (decimal values)	requisition byte (byte ad- dress) for mensuration data retrieval
total number of covered eyes	109 108 118 116 12	
topmost covered eye	109 108 118 116 17	248
lowest (bottom) covered eye	109 108 118 116 22	
first free eye	109 108 118 116 51	
total number of covered eyes	109 108 118 116 13	
topmost covered eye	109 108 118 116 18	249
lowest (bottom) covered eye	109 108 118 116 23	
first free eye	109 108 118 116 52	
total number of covered eyes	109 108 118 116 4	
topmost covered eye	109 108 118 116 36	250
lowest (bottom) covered eye	109 108 118 116 68	
first free eye	109 108 118 116 53	
total number of covered eyes	109 108 118 116 133	
topmost covered eye	109 108 118 116 37	251
lowest (bottom) covered eye	109 108 118 116 69	
first free eye	109 108 118 116 54	
total number of covered eyes	109 108 118 116 6	
topmost covered eye	109 108 118 116 38	252
lowest (bottom) covered eye	109 108 118 116 70	
first free eye	109 108 118 116 55	
total number of covered eyes	109 108 118 116 7	
topmost covered eye	109 108 118 116 39	253
west (bottom) covered eye	109 108 118 116 71	
rst free eye	109 108 118 116 56	

SSLER

8. Serial Interface

8.1 RS 485

8.1.1 Interface

The MLVT disposes of an RS 485 interface that enables an operation of the light barrier as a single system or within a bi-directional bus system with up to 32 extensions (6 MLVT units) in half duplex mode.

The serial data are transmitted in the form of voltage difference without ground relation via an inverted line (designated as "A" or "-") and a non-inverted line (designed as "B" or "+"). Between the two RS 485 outputs, an output level of +/- 2V is provided for the transmitter. On the receiver, levels of +/- 200mV are still detected as valid signal. Due to the symmetrical transfer procedure, combined with a twisted pair cable, reliable linkages covering distances of up to 500 metres at high transmission speed are possible.

8.1.2 Bus system

As more than one transmitter are connected to one common line, only one data transmitter is activated at a time. This must be made sure by using a protocol. All other transmitters must remain inactive, this is realized by applying high-ohmic resistances. Single-line input bus systems always permit only half-duplex traffic, i.e. only one extension is allowed to transmit data. Only if the transmission procedure is completed, other extensions may resume transmitting.

For data retrieval, 6 adresses are provided (248,249,250,251,252,253) for the MLVT. In order to avoid any unwanted data collision, it must be made sure that every single address is assigned to only one MLVT only once, i.e. that no output data value will correspond to that value.

The RS 485-standard defines only the electrical specifications, but no the transfer protocol. The MLVT uses the widely circulated RS232 interface protocol with the parameters 9600, N, 8, 1.

8.1.3 Termination

The 2-cored RS 485 bus systems require the termination of the connection by using a terminating network which ensures a defined state of rest during the high-ohmic phases of the bus operation. A terminating resistor (150 Ohms) will provide a sufficient termination for the RS 486 drivers. The cables should be laid out according to this resistor characteristics, i.e. they should have an impedance of 150 Ohms or higher.

The MLVT (receiver) disposes of a DIP-switch (switch 1 set to ON) at the connector end. By using this switch, the termination at 150 Ohms can be carried out.

8.2 RS 232 Protocol

The following diagram shows the progress of the signal for a data transfer at 9600 baud, 8 data bits, no parity pit, 1 stop bit.

For the RS 232 protocol, only two states (low und high) apply. During the rest position, the line is high. The transmission start is indicated by the declining curve at the start bit. Then follow 8 data bits. The end of every transmission is indicated by a stop bit (always high). After each stop bit, the next start bit may follow immediately. At a transmission rate of 9600 baud, every single bit will take 0,104166666ms, a complete data package will therefore need 1,04166666ms.

FIESSLER

9. Cleaning , 10. Specification

9. Cleaning

In order to ensure an error-free operation of the MLVT (both receiver and transmitter), it is necessary to keep the front windows clean at all times. If both the orange-coloured LED and the green LED at the receiver light up at the same time, even if the light curtain is perfectly adjusted and the scanning field is free, this might be a sign for possible dirty front windows. For cleaning of the front windows we suggest the use of a mild cleanser. The plexiglass is impervious to diluted acids and alka-line solutions and provides limited chemical resistance against organic solvents.

10. Specification

Characteristic data	MLVT	S / MLVTE						
scanning field height	100 mm 1900 mm (according to number of bear	ns)						
scanning field lengths	0,17 m, at a resolution of 14 mm	0,17 m, at a resolution of 14 mm						
(range)	0,1 24 m, at a resolution of 30 mm							
construction lengths	96 mm 1996 mm (according to number of beams)							
definition	smallest resolution 7,5 mm							
number of beams	7 247 beams							
	•••••••••••••••••••••••••••••••••••••••							
reaction time/response time	max. detection and reaction time = Minimum sojou puts.	rn time of the object in the scanning field until response of out-						
	see table on page 5							
Mechanical data								
Housing design	alminium profile, eloxal coated or yellow plastic co reinforced plastic (polyamide). Plexiglass light outl	alminium profile, eloxal coated or yellow plastic coated RAL 1020, end pieces made of non-corrosive, spherically reinforced plastic (polyamide). Plexiglass light outlet and inlet, optional with solvent-resistant silicate glass.						
attachment	shifting fastening brackets on rear side of housing.							
weight	transmitter: 0,45 kg to 4,5 kg depending on constru- receiver: 0,5 kg to 5,0 kg depending on construction	ransmitter: 0,45 kg to 4,5 kg depending on construction length receiver: 0,5 kg to 5,0 kg depending on construction length						
Operating data								
protection category	IP 65							
protection class	ш							
Operating ambient tempe- rature	-10 to 55 °C							
Storage temperature	-25 to 70 °C							
Electrical data	Condex MUV/TO							
	Sender MLVIS	Empranger MLVIE						
power supply	24 V DC ±20 %	24 V DC ±20%,						
current draw outputs	max. 200 mA	max. 200 mA (no load) output FREE and output Interrupted : failsafe						
(receiver)	-	PNP-outputs, max. 0,5 A,						
electric connection	integrated connector plug with PG9 as strain re- lief, alternatively conventional connector plug	RS-485 (+) and (-) integrated connector plug with PG9 as strain relief, alternati- vely conventional connector plug						
connecting cable	3-cored, max. 0,75 mm ²	5-cored, max. 0,5 mm ²						

FIESSLER

Scanning Light Curtain MLVT

ELEKTRONIK

11. Appendix

11.1 Conversion tables

decimal (X10)	hexadecimal	binary code X2	ASCII code	decimal (X10)	hexadecimal	binary code X2	ASCII code
	(X16)				(X16)		
000	00	0000 0000	NULL	064	40	0100 0000	0
001	01	0000 0001	1	065	41	0100 0001	A
002	02	0000 0010		066	42	0100 0010	В
003	03	0000 0011	#	067	43	0100 0011	C
004	04	0000 0100	\$	068	44	0100 0100	D
005	05	0000 0101	%	069	45	0100 0101	Е
006	06	0000 0110	&	070	46	0100 0110	F
007	07	0000 0111	1	071	47	0100 0111	G
008	08	0000 1000	(072	48	0100 1000	Н
009	09	0000 1001)	073	49	0100 1001	1
010	0A	0000 1010	*	074	4A	0100 1010	J
011	0B	0000 1011	+	075	4B	0100 1011	К
012	00	0000 1100		076	4C	0100 1100	L
013	0D	0000 1101	-	077	4D	0100 1101	М
014	0E	0000 1110		078	4E	0100 1110	Ν
015	0F	0000 1111	/	079	4F	0100 1111	0
016	10	0001 0000	0	080	50	0101 0000	Р
017	11	0001 0001	- 1	081	51	0101 0001	Q
018	12	0001 0010	2	082	52	0101 0010	R
019	13	0001 0011	3	083	53	0101 0011	S
020	14	0001 0100	4	084	54	0101 0100	T
021	15	0001 0101	5	085	55	0101 0101	U
022	16	0001 0110	6	086	56	0101 0110	V
023	17	0001 0111	7	087	57	0101 0111	W
024	18	0001 1000	8	088	58	0101 1000	Х
025	19	0001 1001	9	089	59	0101 1001	Y
026	1A	0001 1010	:	090	5A	0101 1010	Z
027	1B	0001 1011	:	091	5B	0101 1011	1
028	1C	0001 1100	<	092	5C	0101 1100	1
029	1D	0001 1101	=	093	5D	0101 1101	1
030	1E	0001 1110	>	094	5E	0101 1110	^
031	1E	0001 1111	?	095	5F	0101 1111	_
032	20	0010 0000	Leer	096	60	0110 0000	
033	21	0010 0001	!	097	61	0110 0001	а
034	22	0010 0010	"	098	62	0110 0010	b
0335	23	0010 0011	#	099	63	0110 0011	С
036	24	0010 0100	\$	100	64	0110 0100	d
037	25	0010 0101	%	101	65	0110 0101	е
038	26	0010 0110	&	102	66	0110 0110	f
039	27	0010 0111	1	103	67	0110 0111	g
040	28	0010 1000	(104	68	0110 1000	h
041	29	0010 1001)	105	69	0110 1001	i
042	2A	0010 1010	*	106	6A	0110 1010	j
043	2B	0010 1011	+	107	6B	0110 1011	k
044	2C	0010 1100	I.	108	6C	0110 1100	I
045	2D	0010 1101	-	109	6D	0110 1101	m
046	2E	0010 1110		110	6E	0110 1110	n
047	2F	0010 1111	/	111	6F	0110 1111	0
048	30	0011 0000	0	112	70	0111 0000	р
049	31	0011 0001	1	113	71	0111 0001	q
050	32	0011 0010	2	114	72	0111 0010	r
051	33	0011 0011	3	115	73	0111 0011	S
052	34	0011 0100	4	116	74	0111 0100	t
053	35	0011 0101	5	117	75	0111 0101	u
054	36	0011 0110	6	118	76	0111 0110	V
055	37	0011 0111	7	119	77	0111 0111	W
056	38	0011 1000	8	120	78	0111 1000	х
057	39	0011 1001	9	121	79	0111 1001	У
058	ЗA	0011 1010	:	122	7A	0111 1010	Z
059	3B	0011 1011	;	123	7B	0111 1011	{
060	3C	0011 1100	<	124	7C	0111 1100	
061	3D	0011 1101	=	125	7D	0111 1101	}
062	3E	0011 1100	>	126	7E	0111 1110	~
063	3F	0011 1111	?	127	7F	0111 1111	\x7f

Scanning Light Curtain MLVT

ELEKTRONIK

11. Appendix

decimal (X10)	hexadecimal (X16)	binary code X2	ASCII code	decimal (X10)	hexadecimal (X16)	binary code X2	ASCII code
128	80	1000 0000	Ç	192	C0	1100 0000	À
129	81	1000 0001	ü	193	C1	1100 0001	Á
130	82	1000 0010	é	194	C2	1100 0010	Â
131	83	1000 0011	â	195	C3	1100 0011	Ã
133	85	1000 0101	à	197	C5	1100 0101	Å
134	86	1000 0110	å	198	C6	1100 0110	Æ
135	87	1000 0111	С	199	C7	1100 0111	Ç
136	88	1000 1000	ê	200	C8	1100 1000	+
137	89	1000 1001	ë	201	C9	1100 1001	É
138	8A	1000 1010	è	202	CA	1100 1010	Ê
139	8B	1000 1011	ï	203	CB	1100 1011	Ë
140	8C	1000 1100	î	204	CC	1100 1100	1
141	8D	1000 1101	ì	205	CD	1100 1101	Í
142	8E	1000 1110	Ä	206	CE	1100 1110	Î
143	8F	1000 1111	Å	207	CF	1100 1111	Ĭ
144	90	1001 0000	É	208	D0	1101 0000	
145	91	1001 0001	æ	209	D1	1101 0001	Ñ
146	92	1001 0010	Æ	210	D2	1101 0010	Ò
147	93	1001 0011	ô	211	D3	1101 0011	Ó
148	94	1001 0100	ö	212	D4	1101 0100	Ô
149	95	1001 0101	ò	213	D5	1101 0101	Õ
150	96	1001 0110	û	214	D6	1101 0110	Ö
151	97	1001 0111	ù	215	D7	1101 0111	
152	98	1001 1000	ÿ	216	D8	1101 1000	_ Ø
153	99	1001 1001	Ö	217	D9	1101 1001	ũ
154	94	1001 1010	Ü	218	DA	1101 1010	Ú
155	9B	1001 1011	0	219	DB	1101 1010	Û
156	9C	1001 1100		220	DC	1101 1100	Ü
157	90	1001 1101	¥	221	סס	1101 1101	-
158	9E	1001 1110	\xfe	222	DE	1101 1110	_
159	9E	1001 1111	Ppx/	223	DE	1101 1111	<u>—</u> В
160	AO	1010 0000	á	224	FO	1110 0000	à
161	A1	1010 0001	i	225	E0 F1	1110 0001	á
162	A2	1010 0010	¢	226	E2	1110 0010	â
163	A3	1010 0011	ę	227	E3	1110 0011	ã
164	A4	1010 0100	~ ¤	228	E4	1110 0100	ä
165	A5	1010 0101	¥	229	E5	1110 0101	å
166	A6	1010 0110		230	E6	1110 0110	æ
167	A7	1010 0111	- 8	231	 F7	1110 0111	C
168	A8	1010 1000		232	E8	1110 1000	è
169	A9	1010 1001	©	233	E9	1110 1001	é
170	AA	1010 1010	a	234	EA	1110 1010	ê
171	AB	1010 1011	«	235	EB	1110 1011	ë
172	AC	1010 1100	-	236	EC	1110 1100]
173	AD	1010 1101	\x7f	237	ED	1110 1101	
174	AE	1010 1110	®	238	EE	1110 1110	-
175	AF	1010 1111	-	239	EF	1110 1111	Ï
176	B0	1011 0000	o	240	F0	1110 0000	_
177	B1	1011 0001	±	241	F1	1111 0001	ñ
178	B2	1011 0010	_	242	F2	1111 0010	Ò
179	B3	1011 0011	-	243	F3	1111 0011	Ó
180	B4	1011 0100	,	244	F4	1111 0100	Ô
181	B5	1011 0101	μ	245	F5	1111 0101	Õ
182	B6	1011 0110	¶	246	F6	1111 0110	Ö
183	B7	1011 0110		247	F7	1111 0111	÷
184	B8	1011 1000		248	F8	1111 1000	ø
185	B9	1011 1001	٤	249	F9	1111 1001	ù
186	BA	1011 1010	0	250	FA	1111 1010	ú
187	BB	1011 1011	»	251	FB	1111 1011	û
188	BC	1011 1100		252	FC	1111 1100	ü
189	BD	1011 1101	-	253	FD	1111 1101	-
190	BE	1011 1110	_	254	FE	1111 1110	_
191	BF	1011 1111	i.	255	FF	1111 1111	ÿ
L			v				2