FIESSLER

ELEKTRONIK

Operating Instructions

translation

EC type examination certified

CONTENTS:

Safety Instructions
Application Instruction for use

Mechanical data
Electrical connection
Putting into operation

ELEKTRONIK

chapter contents page
1 Indicator lights on Frontpanel and switches for safe operation AKAS®-LC II F 3
1.1 Indicator lights on Frontpanel and switches for safe operation AKAS®-LC II M 4
2 General Safety Instructions 5
2.1 Prerequisites for using the press brake protection AKAS® 6
3 Description and fields of application for the equipment 7
3.1 General Instructions 7
3.2 Function Description / Characteristics 8
3.3 Function description during bending of flat sheet metal / bending of wavy sheet metal 9
3.4 Function description during Box bending / bending of small items 10
4 Mechanical data, dimension drawings 11
4.1 AKAS®-LC II M / -F 11
5 Mounting. 12
5.1 How to proceed during the mounting of the AKAS® -system / Fiessler Suspension Devices 12
5.2 1. Overrun Traverse Measuring 13
5.3 2. Design of a Mechanical Suspension Device - void if Fiessler Suspension Devices are used 14
5.4 3. Mounting of the suspension devices at the ram 14
4. Mounting of the AKAS® components at the suspension devices 15
5.5
5. Connection the AKAS® - wiring diagrams: see chapter 6 15
6. Adjustment of the AKAS® during first installationn 16
5.8 7. Adjustment of the distance of the AKAS® from the bending punch 20
5.9 8. Function Verification of all electrical connections in view of the safety classs 4 requirements 21
5.10 9. Self-Acting Overrrun Traverse Test 21
6 Electrical connections -Descriptions / wiring diagrams 22
6.1 Electrical Data 22
6.2 Instructions for Integrating the AKAS® inti the machine control system 23
6.4 AKAS®-LC II M 24
Functions / Terminals 24
Connection 25
6.5 AKAS®-LC II F 26
Functions / Terminals 26
Connection example: safety monitoring of the machine by AKAS®-...F 28
6.5.1 AKAS®-...F selectable Safety functions 29

1. Operation with additional safety control 29
2. Monitoring of the Foot Pedal 29
Connection: 2 Foot Pedals for 2 Operators 29
3. Easy-braking if the Foot Pedal is released (Delayed Foot Pedal Reaction) 29
4. Overrun Traverse Control 29
5. Monitoring of the Stop Valves (EDM) 30
6. Monitoring of the door- and the Emergency OFF-circuits, Emergency-OFF of the Motor-driven rear stoppers 30
Connection: Reset Button wiring for the rear protective grid if operated without EDM 30
Connection: Safety light Grid (equivalent switching) as rear guard 31
Connection: Safety light Grid (antivalent switching) as rear guard 31
7. Installation operation / protection by monitored slow speed wiithout activated protective field 32
Connection: when equivalent switching door contacts are used 32
Connection: when antivalent switching door contacts are used 32
8. Information about the traverse in slow speed -Connection of traverse measuriung device 33
9.Enhancement of Switching-over tolerances of the valve position monitors 33
6.5.2 Programming of the safety functions by Hex switches 34
6.6 Displaying outputs, Indicator-LEDs 36
-Muting lamp, adjustment control LEDs,Indicator-LEDs 36
-Outputs via serial RS232-interface 37
7 Service / Maintenance / Warranty 40
8 Order Codes 41
9 AKAS®-Inspection sheet. 42
10 Declaration of Conformity 43
11 Terms. 44

view of the receiver elements

(1) ajustment controll-Leds of the receiver elements E1, E2, E3 LEDs are on if the beam does focus at all (see page 19)

integrated mutinglamp lamp is flashing if EDM- or SP-input-signals are wrong (see page 36)

LEDs for safety outputs (OSSDs, Fail-Safe PNP) 'red LEDs are on if the OSSDs are in OFF status green LEDs are on if the OSSDs are in ON statusLED is on if box bending funktion is activatedIndicator lights for in- and outputsconnection lid

view of the receiver elements

bendingline
view after removing the connection lid on the receiver

ajustment controll-Leds of the receiver elements E1, E2, E3 LEDs are on if the beam does focus at all (see page 19)
lamp is on if the protective field of the AKAS is not activated 'lamp is flashing if EDM- or SP-input-signals are wrong (see page 36)

(3)LEDs for safety outputs (OSSDs, Fail-Safe PNP) red LEDs are on if the OSSDs are in OFF status green LEDs are on if the OSSDs are in ON status
LED is on if box bending funktion is activated Indicator lights for in- and outputsconnection lid

Indicator lights for in- and outputs (see page 36)

Inputs for press start / stop (release of closing stroke)
 Input for safety point Output for demand for slow speed Input for position control in slow speed

This is the operating instruction for the AKAS® models AKAS®-LC IIM, AKAS®-LC IIF Special instructions for each model are provided with its individual model marking.

Read the operating instructions

Attention is drawn to all safety instructions by this symbol. Particular attention must be paid to such instructions. These operating instructions provide to the user important information concerning the correct use of the AKAS®. These instructions are a component of the light barrier concerned. It is essential that they are easily available at the location where the safety light barrier is installed. Before the initial operation of the AKAS®, all requirements detailed in these operating instructions must be observed. Other relevant regulations and the requirements of the employers' liability insurance associations have also to be complied with.

Qualified Personnel Mounting, initial operation and maintenance may only be performed by qualified persons.
Safety warning Light barriers do not protect anybody from machine-caused flying objects.
The AKAS® protects fingers and hands that hold the sheet during the operation. Therefore it does not protect during any fast engagement between the bending punch and the matrix short time before those are closed. The protection function of the system is cancelled when the Muting lamp is on.

The front beams E1 which are turned to the operator before the bending line do not protect, if the box-bending function has been activated earlier.
With the integration of aKAS ® safety system, the standard should be strictly complied with the European Standard (EN12622).
Protection circuits and Emergency can only stop the opening movement when the movement is interupted with the RXOK outputs.

A-Test: putting into operation

A-TEST when putting into operation
The setting must be done in a way that the following test will be passed:
!!! If either test A or B fails, the machine must not be used until the problem is resolved !!!

- The B-Test must be done for safety reasons each 5 times on the left end and on the right end of the upper tool.
- The press brake must be equipped completely with the heaviest upper tool.
- Start of the closing movement from the maximum top dead centre (T.D.C)

B-Test: daily check (at least every 24 hours)

At the beginning of each shift and after each change of tools, the AKAS® press brakes protection must be checked as follows (see also EN 12622):
Test must be carried out at both left and right ends of the bending punch. The punch must not touch the step-shaped test rod.
a.) Place the test piece in position "10" on the lower tool. Select the box bending function if you use a system of the AKAS®3... product family.
Now start the close down movement.
b.) The press brake stops.
c.) The test piece must be placed in position "15" under the upper tool. In this position ("15") the test piece may not touch the upper tool.
d.) Drive up the press brake. Place the the test piece in position "35" on the lower tool. Select the normal bending function if you use a system of the AKAS®3... product family.

Now start the close down movement.
e.) The press brake must be stopped in a way that the test piece (" 35 ") may not touch the a. upper tool.
f.) Move the test piece ("14") along the tip of the upper tool. The AKAS®-II receiver has to remain in the interrupted (LS unterbrochen /interrupted $=$ red LED) state.

1. Use only tools with the same height in the same fixing on the press. All utilized tools must have one common bending line.
2. Stoppers, which are mounted at the matrix, lead to a premature switching-off of the downward movement.
3. The maximum allowable overrun traverse of the machine: 10 mm bei AKAS®-LC II...

The press must have an automated overrun traverse control for the first stroke. If not, it can be realised by the AKAS®-...F and a cam controller or by the Fiessler AMS-system. Before the initial start-up, the overrun traverse must be checked either by using the test rod (see page 5) or by using an Overrun Traverse measuring device. (upon customer's request, Fiessler Elektronik will perform the Overrun Traverse Measuring on the customer's machine.) If the results of 10 consecutive measurements are larger than 10 mm the fast speed must be reduced.
4. Due to the missing sychronization during fast speed, AKAS® cannot be used for two machines aligned in parallel (e.g. "tandem press brake") .
5. Muting signal If a light beam is interrupted by the sheet which is to be bent, the AKAS® would stop the working stroke immediately. Therefore the AKAS® must be muted before it gets interrupted by the sheet. Likewise, slightly uneven sheets should not lead either to an unintended switching-off of the cutting movement. From an opening of \leq 13-22 mm (according to overrun traverse of the press) the control system of the machine must send a Mutingsignal to the reciever. Then the control system of the machine must reliably guarantee according to safety category 4 , that from this time the stroke speed is $<\mathbf{1 0 ~ m m} / \mathrm{s}$.
6. The protection of a pressbrake by the $A K A S ®$ does not permit a bending in the bottom of a box inside one box in fast speed.
7. The AKAS® does not protect:
-if the machine is only run in the work speed, or AKAS will be interrupted during fast speed and the stroke will be continued in work speed
-if the overrun traverse of the press brake is too long -from squeezing during the bending operation -if the mutinglamp is constantly on

The hazardous state of the machine must be terminated by the sensor function.
9. The safety level (class 4) of the accident preventing light barrier should at least correspond to the safety level of the control system of the machine.
10. Laser beams may be deviated due to air currents, this may cause unwanted and unforeseen machine stops. Therefore the machine must be erected at a place free of air currents.

Produkt conformance

Acceptance

"Complies with FDA radiation performance standards, 21CFR Subchapter J" or "Product complies with radiation performance standards under the Federal Food, Drug and Cosmetic Act" or "Conforms to the applicable requirements of 21CFR SubChapter J" or "Complies with 21CFR and 1040.10 and 1040.11" or "Product conforms to 21 CFR 1040".
Acceptance test: the installation acceptance test and inspections should be carried out by a competent person in possession of all the information supplied by the manufacturer of the machine and the ESPE.
Upon customer's request, Fiessler Elektronik will perform the initial acceptance as well as the annual test. Additionally, customer training seminars on how to execute annual tests will be conducted at regular intervals.
Annual Inspection
The machine owner must make sure that a competent person is assigned to check the light barrier annually. This person can be an employee either from the light-barrier manufacturer or from the operator's staff. The annual test shall be executed according to the inspection sheet on pae 48.

The laser - accident preventing light barrier $A K A S ®$ is an electro sensitive protective and controlling device (ESPE) which has the function to protect operators from accidents.
This happens as follows : Before a part of the body is squeezed between two opposed moving machine parts, this part of the body interrupts at least one light beam. By this means the movement of the machine is stopped, before it comes to an injury.

AKAS®

- meets IEC 61496, Type 4
- is self- monitoring without additionally wiring.
- easy to adjust after tool changing.

Operative range for the laser-accident preventing light barrier of the AKAS® types are: press brakes

AKAS®-3M / -3F, AKAS®-IIM / -IIF: equipped with electromotor driven supports for transmitter and receiver for self-acting tool change if tools with diefferent heights are used

AKAS®-LC II M / -LC II F: is recommended if there are no freqent tool changes or in case if extended operation with the same tool is required, therefore no re-adjusting to different tool sizes is necessary. (Fig.7/4)
without Support:
AKAS®-LC II M,
AKAS®-LC II F

Serial Numbers:
AKAS®-LC II M
AKAS®-LC II F

The serial numbers are located at the down side of the housings of both AKAS®-LC transmitter and AKAS®-LC receiver.

	systems without operating mode selection operation only with additional safety PLC (e.g. FPSC)	systems with operating mode selection with integrated safety fuunctions
Functions / Characteristics	AKAS®-LC II M	AKAS®-LC II F
max. Overrun Traverse of the press brake	10 mm	10 mm
recommended turnover point from fast speed into slow speed (according to overrun traverse of the press) Distance between metal sheet and bending punch)	according to overrun traverse $13-22 \mathrm{~mm}$	according to overrun traverse 13-22 mm
Detecting beams / Receiver elements	$2 / 3$	$2 / 3$
Inputs		
Overruntraverse control NLW	-	1 -selectable with / without
3 inputs for control of doors / emergency-OFFcircuit NA1, NA2, NA 3 for paired use 1 pair lateral door circuit, equivalent or antivalent, 1 pair rear door circuit, equivalent or antivalent, 1 pair emergency-OFF-circuit s	:	3 Pairs -selectable with / without
Stopp contactor control EDMO, EDMS	: -	2 -selectable with / without
data of traverse in slow speed SGW	\vdots -	1 -selectable with / without
start / stop of closing stroke FUS, FUO	2 equivalent	2 -selectable antivalent or equivalent switching
position control in slow speed SGO, SGS	2	2 -selectable antivalent or equivalent switching - selectable with / without foot pedal delay
selection of box bending KAST	1	1
safety point SP	1	1
Outputs		
Safety outputs for release of closing stroke OSSD1, OSSD2	2	2
release and Emergency OFF of the rear stoppers RXOK1, RXOK2	\vdots -	2
box bending function is displayed HUSP	1	1
output for messages RS 232 TXD	1	1
demand for slow speed SGA	1	1

Principle of function 1. Release the closing movement by activating the foot pedal. bending of flat sheet metal
2. Press brake closes in fast speed ($>10 \mathrm{~mm} / \mathrm{s}$)

change-over point above sheet metal
from fast speed into slow speed:
according to overrun traverse 13-22 mm

Receiver elements:E1, E2, and E3
activated (protection)

3. After reaching the change-over point from fast speed to slow speed ($=10 \mathrm{~mm} / \mathrm{s}$):

E1 and E3 are deactivated,
E2 remains activated for $\mathbf{0 , 6 s}(6 \mathrm{~mm})$ more (protection)
4. All receiver elements are muted and the muting lamp is on. The bending procedure is finished.
(The fast speed mode and the slow speed mode are limited of about 2 min .)

Advice The beams of the $A K A S ®$ must be located at a certain distance to the bending punch.
(See chapter 5.2 Overrun Traverse Measurement and
chapter 5.8 Adjustment of the distance between the AKAS® and the bending punch.
Caution! Use only tools with equal overall height within one fixing.

Bending of wavy sheet metal Closing movement with interrupted protective field
The AKAS® system offers the possibility to execute a closing movement under monitored slow speed even when the protective field is interrupted by a wavy sheet metal.
After the interruption of the protecfive field and the release and reactivation of the foot pedal, the AKAS will deactivate the SGA output when the protective field is interrupted. By this, only slow speed will be enabled by the machine control (NC).
AKAS® provides a reaction time of about 200 ms for the machine control and then activated the safety switching outputs for the closing movement (OSSDs). The OSSDs remain activated as long as the AKAS® receives a slow speed message to SGS and SGO within the next 70 ms + the selected enhanced tolerance. A tolderance enhancement is possible only with the AKAS®F systems.

By twice pressing the foot pedal can also use this function to perform a stroke, when the protective field of the AKAS $®$ is interrupted in the OT.

Function principle box bending

1. "Box Bending" is activated by the box bending button. The signal at the box bending input KAST must be high $(+24 \mathrm{~V})$ for at least 100 ms and after that low (0 V) for at least 100 ms .
(The box bending function can be canceled by twice activating the box bending button again)
2. AKAS® confirms the selection of the box bending by activating the output HUSP $(=+24 \mathrm{~V})$.
change-over point above sheet metal from fast speed into slow speed:
according to overrun traverse $13-22 \mathrm{~mm}$
receiver elements:
E1 not activated
E2 and E3 activated (protection)

fig. $10 / 2$
3. Release the closing movement by activating the foot pedal. The press closes in fast speed (>10mm/s).

E3 is deactivated,
E2 remains activated for $\mathbf{0 , 6 s}(6 \mathrm{~mm})$ more (=protection)
4. After reaching the change-over point from fast speed to slow speed ($=10 \mathrm{~mm} / \mathrm{s}$) :
5. All Receiver elements are muted and the muting lamp is on. The bending procedure is finished.
(The fast speed mode and the slow speed mode are limited of about 2 min .)
6. After the bending procedure the box bending functiuon is cancelled.

Bending of the box bottom Closing movement with interrupted protective field

The $A K A S ®$ system offers the possibility to execute a closing movement under monitored slow speed even when the protective field is interrupted.
After the interruption of the protecfive field and the release and reactivation of the foot pedal, the AKAS will deactivate the SGA output when the protective field is interrupted. By this, only slow speed will be enabled by the machine control (NC).
AKAS® provides a reaction time of about 200 ms for the machine control and then activated the safety switching outputs for the closing movement (OSSDs). The OSSDs remain activated as long as the AKAS® receives a slow speed message to SGS and SGO within the next $70 \mathrm{~ms}+$ the selected enhanced tolerance. A tolderance enhancement is possible only with the AKAS®F systems .

Bending of very small pieces

In the case of bending of very small pieces, which must be guided by the fingers, the box-bending function must be selected. Otherwise, the fingers would interrupt E1, which would lead to the switching off of the bending process!
With activated box-bending function, a finger which is placed next to the slog on a large matrix, is not detected!!

max. Standard-Range

max. 6 m
housing type The aluminium housing of both transmitter and receiver are powder coated in RAL 1020 yellow. The optical head is made of acid-resistant spherically reinforced plastic (polyamide).
fastening fastening with shifting tenon blocks at the three side of transmitter and receiver housings

How to proceed: Step by step mounting the AKAS®

1	Overrun traverse measurement
2	Design of the mechanical holders - void if Fiessler holders are used
3	Mounting of the holders at the ram
4	Mounting of the AKAS® at the ram
5	Connection of the AKAS® I Selection of the operating mode at the ...F-series
6	Adjustment of the AKAS® during first installation
7	Adjustment of the distance of the AKAS® from the bending punch
8	Function Verification of all electrical connections in view of the safety classs 4 requirements
9	Self-acting Overrun Traverse Test

Holder for mounting of the AKAS®-LC order code AKAS/AS/3/LC/ZM (optional)

fig. $12 / 7$

1. Overrun Traverse Measurement

The press must have an automated overrun traverse control for the first stroke. If not, it can be realised by the AKAS®-...F and a cam controller or by the Fiessler AMS-system . Before the initial start-up, the overrun traverse must be checked either by using the test rod (see page 5) or by using an Overrun Traverse measuring device. (upon customer's request, Fiessler Elektronik will perform the Overrun Traverse Measuring on the customer's machine.)
If the results of 10 consecutive measurements are larger than 10 mm he fast speed must be reduced.

fig. 13/1

distance Z after adjustment	max. allowable stop distance of the machine with interruption of a beam of the AKAS®-- LCII in fast speed	recommended change over (U) from fast speed to work speed before the bending punch meets the sheet metal *
9 mm	10 mm	18 mm
8 mm	9 mm	17 mm
7 mm	8 mm	16 mm
6 mm	7 mm	15 mm
5 mm	6 mm	14 mm
4 mm	5 mm	13 mm

* For tolerating undulating sheet metal of $2 \mathbf{m m}$ tolerance. Fig.13/2

2. design of the holders void if Fiessler holding Devices
are used

- The dimensions of the self-supplied holders must be individually laid out according to the dimensions of the press brake.
- The self-supplied holders must be made of torsion-free rigid material, e.g. steel tubes $80 \times 50 \times 5 \mathrm{~mm}$.
- They must be sufficiently long so that the largest and the shortest tool are still within the detection range of the AKAS®.
- If frequent tool change requires the presence of a swivable holder, this should be installed at the receiver arm, in order to leave the precise adjustment of the transmitter arm unchanged.

3. Mounting of the holders at the ram
a) The holders must be mounted at the ram in a way that the marks on transmitter and receiver correspond exaclty to the bending line. The receiver element E1 must face the operator and E3 must remain free when the highest tool is utilized. (Fig. 14/3 u. 14)
b) The gap between the front edge of the AKAS®systems and the press brake should be $>100 \mathrm{~mm}$ in order to prevent injuriers while closing the press.
c) The existing mechanical guards of the machine must be modified in a way that any by-passing of the safety equipment by the operator is not possible. Likewise, any danger of geeting caught between grids and safety equipment must be excluded.

Fig. $14 / 2$

Transmitter and receiver of the AKAS® must not be subject to mechanical stress (e.g. bottles must not be placed on it). To prevent this and to protect the AKAS® from any damages, a solid protection cap should be always mounted.
Make sure that no material or solid parts are placed in the clearance beneath the AKAS® and the holders, in order to exclude any collision caused by the closing movement of the press brake. Fig. 14/4.

Fig. 14/ 4

ELEKTRONIK

4. Mounting of the AKAS®-LC ... to the holders
Fiessler-holders

The AKAS®LC-Holders came with a complete set of fastening material and a detailed mounting instruction.

fastening bracket with tenon blocks at the rear

slot $6,7 \mathrm{~mm}$ slot for pivoting around the lateral axis and for fastening.

To guarantee a trouble-free operation, both the receiver and the transmitter must be fixed at solid, deformation-free plane-parallel constructions at the ram.
The adjustment screws must be easily accessible. Pay attention to avoid any deformation of the profile.
When pivoting around the longitudinal axis, the locknuts of each M 6 screw at the angle bracket should be loosened.

Wiring diagrams are shown in chapter 6 Electrical connections.
The functions are described in chapters 6.3, 6.4, 6.5.
The position of the Hex switches is described in chapter 6.5.2.

6. Adjustment of the
 AKAS®

 at the first installationTo guarantee a trouble-free operation, the mecanical fixtions of both the receiver and the transmitter must be fixed at solid, deformation-free plane-parallel constructions at the ram.

The fastening brackets are designed for the fastening and adjustment of the AKAS®-LC II.

Together with the sliding tenein blocks, the brackets allow a universal fastening.
Transmitter and receiver must be mounted in a way that the receiver element E 4 remains free when the bending punch is fixed.
adjustment of the receiver
If a height-adjustable support is used, adjust the support with the help of a spirit level vertically, i.e. parallel to the guiding rails of the ram.
Drop a perpendicular from the bending line of the bending punch and adjust optically the receiver with the the help of M4 adjustment screws so that the mark (centre of the receiver elements) is located vertically at the front of the receiver. When using a manually movable support for transmitter and receiver, make this test along the entire displacement area.

Check the distance between the mark and the perpendicular (bending line) to make sure that the receiver is carried up parallelly to the bending line.
adjustment of the transmitter
The transmitter must be mounted in a way that its marks are located perpendicularly to the bending line, the same way as the receiver is positioned.
If a support is used, adjust the support with the help of a spirit level vertically, i.e. parallel to the guiding rails of the ram.

The red transmitting beams should meet the receiver like it is shown inthe opposite illustration.

Fig.16/ 2

The receiver and the transmitter must be swiveled around the longitudinal axis in a way that their housings are plane parallel to the ram. With pivoting around the longitudinal axis, the adjustment screw or the locknut that counteracts the screwing movements, must be loosened.
fine adjustment The holder of the transmitter must be turned around both the longitudinal and vertical axis until the laser beams are aligned parallel to the ram.

Fig. 17/6

When using large tools, the AKAS®-LC transmitter is adjusted as follows:

1. Place the special AKAS®-LC magnetic lamina with its magnetic side at the spot marked " A ".
2. Adjust the transmitter in a way that the picture
"LS" can be seen at the front side of the lamina..
3. Then place the special AKAS®-LC magnetic lamina with its magnetic side at the spot marked "B".
4. Adjust the transmitter in a way that the picture
"LS" can be seen at the magentic side of the lamina.
5. Repeat the steps 1-4 until at both positions A and
B the picture LS can be seen.

possible ma la djustment	remedy		
AKAS® LC II M / -F		\quad AKAS®-LC II M / -F \quad	The beam misses the target circle of
:---			
the magentic lamina at both of the tool			
tips and meets at the right hand side			
of the circle.		By unscrewing all M4adjustment screws	
:---			
(Fig. 15/2) the support must be positioned			
further away behind the bending line. i.e.			
push the Fiessler holders in their slots			
further to the front.	$	$	The beam misses the target circle of the magentic lamina at both of the tool tips and meets at the left hand side of the circle.
:---	:---		
The beam hits the target circle at the left tool end, at the right tool end the beam edge is lower than the target circle = case B Fig. 18/1	The transmitter must be turned to the right in the slot, i.e. on the Fiessler hol- ders, the inclination adjustment screw mzust be tightened.		
The beam hits the target circle at the left tool end, at the right tool end the beam edge is further up than the target circle = case C Fig. 18/1	The transmitter must be turned to the left in the slot, i.e. on the Fiessler holders, the inclination adjustment screw must be looseend.		
The beam hits the target circle at the left tool end, and at the right tool end the beam it hits a spot at the left outside of the target circle	After unscrewing the upper left M4 adjust- ment screws and after readjusting the right M4 adjustment screws the transmit- ter (Fig. 15/2) must be turned clockwise around its longitudinal axis, i.e. at the Fiessler holders, the swiveling is carried out counterclockwise by loosening of the front swiveling adjustment screw and by tightening of the rear swiveling adjust- ment screw		
The beam hits the target circle at the left tool tip, and at the right tool end the beam it hits a spot at the right, outside of the target circle	After unscrewing the upper left M4 adjust- ment screws and after readjusting the right M4 adjustment screws the transmit- ter (Fig. 15/2) must be turned counter- clockwise, i.e. at the Fiessler holders, the swiveling is carried out counterclockwise by loosening of the rear swiveling adjust- ment screw and by tightening of the front swiveling adjustment screw.		

in correct transmitter adjustment

adjustment control - LEDs

Advise!

E3, E1, E2
LEDs are flashing slowly about once per second: Press has successfully stopped at the cam during the overrun traverse test, only when the cam is free again, the OSSDs can be enabled again.
The ajustment controll-LEDs are flashing slowly until the press brake is not opened completely.

Adjusting instruction when using a movable support for transmitter and receiver

When using frequently upper tools with different hights, the system AKAS®-II or AKAS®-3 is recommended owing to the enhanced operating convenience during the tool change.

How to adjust the AKAS LC II according to the overrun traverse of the press brake.

1. Evaluate the overrun traverse of the press brake.

2. Receiver adjustment

- Place the lower edge of the tool exactly on the line of the scale which corresponds to the evaluated overrun traverse.
- Move the receiver upwards until LED E3 lights up. Then, move the receiver downwards until the LED E3 is to go out and "Free" is displayed at the receiver.

4. Enter the switch-over point (and the waviness of the sheet) at
5. The illustration on the receiver must look like this

After having completed the adjustment procedure, the tests (see page 5) must be carried out.
Schematic layout of the AKAS®LC after a tool change and of the consecutive follow-up of transmitter and receiver

8. Verification of all electrical connections referring to safety class 4

see chapter 6 Electrical connections

9. Automatic overrun

 traverse testAccording to prEN 12622, the overrun traverse of the machine must be verified automatically at the first stroke after its connection to power of the press brake or of the $A K A S ®$ and it must be repeated at least after 30 h , if the machine remains connected to power for a longer period of time.

The products of the AKAS®-...F product family can execute this overrun traverse test with the help of a cam scitch and a normally closed contact. For this, the length of the cam must correspond to the allowable overrun traverse plus the hysteresis of the cam switch. The maximum allowable overrun traverse must not exceed the value of 10 mm with the AKAS®-LCF .

This overrun traverse cam must be mounted in a way that the press is in the maximum closing speed when the cam switch is opened by the cam, and the stroke is started out of the upper dead center of the machine.

The overrum traverse test is carried out after every voltage reset and must be repeated every 24 hours. After the successful overrun traverse test, the press must be at first opened for the execution of one bending stroke.

If the overrrun traverse is too long, the cam does not open the overrun traverse cam switch when the closing movement is stopped, and the AKAS erwawill prevent the complete bending stroke in fast speed.

If the overrun traverse control is not carried out by the $A K A S ®$, the machine control must carry out an overrun traverse test at least after a voltage reset. This overrun traverse test must be repeated within the next 30 hours.

Electrical data

Safety Category

Performance Level
Safety Integrity Level
operation voltage
max. power cunsumption protection from incorrect connection
protection class
electrical connection
connecting cables
cable arrangement

outputs

inputs
response times
time windows for the input
signals (basic tolerances)

Tolerance enhancement

environmental data

ambient operation temp.
storage temperature

4 (EN ISO 13849-1:2008) and EN 61496 or IEC 61496 and EN 12622
PL e (EN ISO 13849-1:2008), MTTFD > 300
SIL3 (EN 62061:2005), PFH $=2,38 \times 10^{-10} 1 / \mathrm{h}$

24 V DC, +/- 20 \%, SELV
(no charge): max. 0,5 A
Protection against all possibilities of errors is not provided.
III
transmitter: angular plug receiver: integrated plug-in connector with M 32 as strain relief
transmitter: 3-core max. 1 mm receiver: 10 -bis 28-core (according to operating mode) max. 1 mm

Cables to be laid separately from high-voltage cables. The cable laying must be arranged in a way that no mechanical damage of the cable is possible. For that reason the cable must be installed in a reinforced hose if not protected by the machine.
OSSD 1 and 2: Fail-Safe PNP outputs, max. 0,5A, with short-cut and side-current monitoring RXOK1 and 2: PNP-outputs with short-cut and side-current monitoring during switching on, max. $0,5 \mathrm{~A}$ SGA , HUSP, SEU2K, KAST (KAST: only when using the external muting lamp): PNP-outputs max. 0,5A TXD: RS 232 serial interface

FUO, FUS, SGO, SGS, SP, EDMO, EDMS, NA1, NA2, NA 3, NLW: 0 V / 24V DC +/- $20 \%, 10 \mathrm{~mA}$ KAST: : 0 V / 24V DC +/- 20 \%, 25 mA
$1,5 \mathrm{~ms}$ between the interruption of a light beam and the disabling of the OSSDs
10 ms between the release of the foot pedal orthe opening of a protective circuit and the disabling of the OSSDs 10 ms between the opering of a protective circuit and disabling of the release of the rear stoppers RXOK1 \& -2
$2,6 \mathrm{~ms}$ between the opeing of the overrun traverse cam switch and the disabling of the OSSDs during the overrun traverse test
switch-over from stopped state into closing state after enabling of the OSSDs : 300 ms (only with operatiing mode with contactor/valve control EDM).
switch-over into slow speed state when the start is carried out within the range of the safety point (at SP = 1): 100 ms after detection of the closing movement state by the EDM, i.e. 100 ms after enabling of the OSSDs when the press is operating without the EDM.
switch-over into fast speed when the start of the press is outside the range of the safety point (at SP = 0): 100 ms after detection of the closing movement state by the EDM, i.e. 100 ms after enabling of the OSSDs when the press is operating without the EDM.
switch-over into slow speed state when the start of the press with slow speed request (200 ms after SGA $=0$ has been transmitted to NC): 70 ms after detection of the the closing movement state by the EDM, i.e. 70 ms after enabling of the OSSDs when the press is operating without the EDM.
only with AKAS.....F: max. 300 ms
0° to $50^{\circ} \mathrm{C}$
-25° to $70^{\circ} \mathrm{C}$

Caution!! The use of both $A K A S ®$...without F series and the $A K A S ® . .$. with F series adjusted to "operation with connection to an additional safety PLC" receiver is only permitted in combination with an additional safety PLC (e.g. FPSC) which provides the safe fast speed-/slow speed signals and closing request signals via cables with short-cut and side-current monitoring and which provides a safe processing of the OSSD-Signals of the AKAS®.

Caution!!! Only if the accident preventing light barrier AKAS® has been installed according to the operating in-
 structions and connected according to the wiring diagrams, and if all relevant national and international accident prevention/safety regulations are observed, a safe operation is ensured!
Any modification of the specified circuits can cause hazardous states and is therefore forbidden.

[^0]
ELEKTRONIK

Muting signal Muting signal from the machine control system:
(Mutingsignal available from the contactor position control of the working stroke valve, from the pressure switch
 or from the AMS)
Displaying of the muting signal out of the machine control must be laid out in a way that no muting signal is given if there is any misfunction of the involved switching elements (i.e. no release of a contactor or no switching over from fast motion into working motion) !

The set up operation has to be carried out according to the description in chapter 6.5.1 function 7 on the AKASF systems, or the AKAS® must be switched off, the safety outputs of the AKAS® (OSSDs) must be muted, and the fast speed closing speed must be reliably excluded.
After the set up operation it must be made sure that this special muting of the OSSDs is cancelled.

			OK
Checkliste	1	AKAS® is used on "foot operated fast motion" mode.	
	2	"Foot operated fast motion" should only be possible with activated AKAS®	
	3	During foot operated motion with AKAS®, the downward movement should only happen by pressing the foot pedal . (The above-mentioned foot switch, must be a 3 position safety foot switch.)	
	4	The valves relevant for the downward movement must be triggered as directly as possible by the Fail-Safe PNP outputs OSSD1 and OSSD2 to keep the overrun traverse as short as possible	
	5	In all operating modes except "Foot operated fast motion" the AKAS® must be disconnected from the power supply (=switched off).	
	6	The machine control system issues a muting signal with 13-22 mm above the slug. (according to overrun traverse of the press) (Mutingsignal coming from the contactor position control of the working stroke valve, from the pressure switch or from the AMS)	
	7	The machine control system prevents the fast speed during the closing movement if no static signal is given (SGA). This function of the press must not be necessarily safety-orientated.	
	8	When the muting signal is given, it must be guaranteed according to safety class 4 that the stroke of the machine is $<10 \mathrm{~mm} / \mathrm{s}$.	
	9	The box-bending function must be chosen and acknowledged by a button (change-over contact). Here a pedal is more advantageous, because by using it both hands stay free to hold the sheet.	
	10	After a voltage reset, an overrun traverse test is carried out.	
	11	The overrun traverse is smaller than 10 mm .	

function - protection of the operator from being squeezed between the ram and the matrix

- The safety PLC gives a safe signal to the AKAS® inputs FUS and FUO, if a closing movement is ab out to be performed, and another safe signal is given to SGO, SGS and SP, if the press closes safely at slow speed. For this, the signal lines must be monitored for eventual short-circuits by the safety PLC.
- The safety PLC evaluates the safety outputs OSSD1 and OSSD2 of the AKAS® and stops the closing movement, if there is no signal from the OSSDs.
- The machine control system must carry out an overrun traverse test of the press at least after every voltage reset, and this test must be repeated at least within the next 30 h . By doing this, the overrun traverse must not exceed the value of 10 mm at the AKAS®-LC II M .

Anschlussklemmen Empfänger			
Nr	designation	meaning	signal level
1	Erde	functional ground	
2	+Ub 24VDC	: power supply voltage	
3	-Ub 0V	power supply voltage	
4	RS 232 GND	: Meldeausgang (Status-/Fehlermeldung	
5	-Ub Sender	connection for -Ub AKAS-transmitter	
6	+Ub Sender	connection for +Üb AKAS-transmitte / key-operated switchfor adjustment	+24 V if FUS is triggered or key-operated switch is on
7	FUS	input Start / Stop closing stroke	0 V Press brake stop +24 V Press brake close inputs
8	FUO	input Start / Stop closing stroke	$0 V$ Press brake stop valent +24V Press brake close
9	SGS	input slow speed position	$0 V$ at fast speed +24 V : at slow speed inputs
10	SGO	input slow speed position	0 V : at fast spoed +24 V : at slow speed
11	SP	input safety point	0 V : within fast speed range +24 V : within slow speed range
12	SGA	output slow speed request by AKAS	0V only slow speed permitted +24 V fast-/slow speed possible
20	HUSP	output message of box bending function	+24 V if box-bending is selected
23	OSSD1	safety output release of closing stroke	+24V if released
24	OSSD2	safety output release of closing stroke	+24V if released
25	KAST	input box bending	+24V pulse min. 100 ms
26	RS 232 out	output message (State-/error)	

transmitter

Terminals of the transmitter		
Nr	designation	meaning
1	+S	+Ub transmitter
2	-S	-Ub transmitter
6	Erde	functional ground

AKAS®-LC II M
AKAS®-LC II F --with HEX switch position 0000
--operation only with additional safety PLC (e.g. FPSC)

functions AKAS®-LC II F provide - apart from the standard functions - more safety functions which enable the moritoring and control of a press brake without additional safety PLC.
These safety functions are selectable via 4 HEX switches.

- Protection of the operator from being squeezed between the ram and the matrix
- Overrun traverse test (after every voltage reset, and to be repeated at least within the next 30 h)
- Stop contactor control (EDM)
- Monitoring of the slow speed position (position monitoring of the contactors)
- Release of the closing stroke (via safety outputs)
- monitoring of the mechanical protective grids (at the rear and at the sides of the press)
- emergency-OFF-Monitoring (Emergency OFF at the rear and at the front)
- Emergency OFF of the rear stoppers
(Emergency OFF at the rear and at the front, metal protective grids)

transmitter

Machine-Safety monitoring by AKAS®-...F

1. operation with additional

Safety PLC
(e.g. Safety PLC FPSC)

The safety PLC is responsible for the fast speed / slow speed position control and provides this state to the AKAS€ inputs SGO, SGS and SP vis a signal line. (see wiring diagram 1/S. 29)
in fast speed: at SGO, SGS and SP $=0 \mathrm{~V}$
in slow speed: at SGO, SGS and SP $=+24 \mathrm{~V}$
During this, the safety PLC must monitor the signal line to the $A K A S ®$ for eventual short-circuits against potential conductiong lines.

In the operating modes "without additional Safety PLC" the monitoring of the foot pedal is permanently present. AKAS ${ }^{\circledR}$ activates the safety outputs OSSDs only if the foot pedal is permanently pressed. AKAS® monitors both positions of the foot pedal and requires:
if the foot pedal is released: at $\mathrm{FUO}=+24 \mathrm{~V}$ and at $\mathrm{FUS}=0 \mathrm{~V}$ (see wiring diagram 4a/S. 29) if the foot pedal is pressed: at FUO $=0 \mathrm{~V}$ and at $\mathrm{FUS}=+24 \mathrm{~V}$
The monitoring function is able to monitor even 2 connected foot pedals, if two operators work at the press brake and if the foot pedals are correctly wired as shown in wiring diagram 4b/S. 36.
In the operating modes "with additional Safety PLC" the monitoring of the foot pedal can be cancelled, by selecting: " equivalent switching inputs for enabling the closing stroke".
In this case, both $A K A S ®$ inputs FUS and FUO are triggered $\mathbf{+ 2 4} \mathbf{V}$, if a closing movement of the press brake is wanted.

wiring of foot pedal for one-man operation operation without monitoring of the foot peopel
dal

wiring of foot pedals with key switch for one - or two-man operation operation with monitoring of the foot pedal

wiring diagram 4b/5. 29
3. easy-breaking when the foot-pedal is released (foot pedal response delay)

During the operating modes without additional safety PLC, a foot pedal response delay of the AKAS® safety outputs (OSSDs) of about 30 ms after the release of the foot pedal during the fast speed closing stroke can be selected.

When the foot pedal is checked also by the machine control, the control will execute an easier, smoother breaking via the proportional valves of the closing movement during this time, just before the OSSDs of the AKAS® disable the other closing stroke valves.
4. Overrun traverse control

The overrun traverse control is realized by a cam switch with a normally closed contact. For this, the length of the cam must correspond to the allowable overrun traverse plus the hysteresis of the cam switch. The maximum allowable overrun traverse must not exceed the value of 10 mm . This overrun traverse cam must be mounted in a way that the press is in the maximum closing speed when the cam switch is opened by the cam, and the stroke is started out of the upper dead center of the machine.
The overrum traverse test is carried out after every voltage reset and must be repeated every 24 hours. After the successful overrun traverse test, the press must be at first opened for the execution of one bending stroke. The ajustment controll-LEDs are flashing slowly until the press brake is not opened.
If the overrrun traverse is too long, the cam does not open the overrun traverse cam switch when the closing movement is stopped, and the AKAS will prevent the complete bending strokes in fast speed.
If the overrun traverse control is not carried out by the AKAS®, the machine control must carry out an overrun traverse test at least after a voltage reset. This overrun traverse test must be repeated within the next 30 hours.
5. Control of the stop contac-
tors
(EDM)
6. Monitoring of the door- andthe

Emergency OFF-circuits, Emer-gency-OFF of the Motor-driven Stops

AKAS® monitors in a safe way both positions of the stop- and the fast speed closing state of the contactor position monitors and switching contactors and requires:
in fast speed state at EDMS $=+24 \mathrm{~V}$ and at EDMO $=0 \mathrm{~V}$
in Stop state at EDMS $=0 \mathrm{~V}$ and at EDMO $=+24 \mathrm{~V}$ (see wiring diagram 2/S.39)
During the closing movement in slow speed, EDMO has to be $=0 \mathrm{~V}$, EDMS is not monitored.
After the relase of the safety switching outputs (OSSDs) the AKAS® requires a switch-over of the EDM signals no later than $300 \mathrm{~ms}+$ the programmed tolerance enhancement.
In the operating modes with additional safety PLC the safety PLC (e.g FPSC) must carry out the monitoring of the stop contactors.
The protective doors and the emergency OFF-buttons are evaluated by double-channel inputs. As soon as at least one inout is disab led, i.e. is in OFF state, the closing movement will be stopped immediately by switching OFF of the OSSDs, and the movement of the rear stoppers is prevented by the disabling of the double channeled release RXOK1 and RXOK2.
A continuation of the press operation in only possible if all relevant protective switching circuits are disabled and and then closed again, and if afterwards the respective rest button is activated.
If the protective side doors are opened, $A K A S ®$ permits the movement of the rear stoppers after having activated the respective reset button. The closing movement of the press is permitted only during slow speed state. For this, AKAS® requires the prevention of the fast speed by the NC, by disabling the output SGA. AKAS® monitors the slow speed state during the closing movement. During this, the protective field of the AKAS® is not active.
During operation with foot pedal monitoring (antivalent foot pedal contacts), the reset is carried out after the disabling and re-enabling of the Emergency-OFF-Circuits and of the lateral protective metal grids. This is carried out by activation of an normally closed contact butto., which is connected in series to the normally closed foot pedal contact at FUO (see wiring diagram 2/S.39 u. 5b/S.30) .

The Reset after the disabling and re-enabling of the rear protective grid is carried out during the operation with EDM by activation of a normally closed contact button, which is connected in series to the normally closed contactor controls at EDMO. (see wiring diagram 5a/S.30).
a. Reset button for rear safeguard at operating mode without EDM
b. Reset button for all

Protective doors and
emergency OFFs at ope-
rating mode without moni-
toring of the footpedal
toring of the footped

wiring diagram 5a/S. 30

Protective doors and emergency OFFs
at operating mode withEDM / protective doors equivalent switching / with monitoring of the

During the operation without foot pedal monitoring (equivalent triggering of FUO and FUS) the reset of all protective circuits is carried out by a normally open contact which is connected between +24 V and EDMO. (see wiring diagram $5 \mathrm{a} / \mathrm{S} .30$)
The ermegency-OFF-circuits are equivalent switching, i.e. the eemergenca-OFF-buttons must have 2 normally closed contacts. When laying out the circuits of the protective doors, you may choose from either the equivalent switching protective door contacts, i.e. 2 normally open contacts per door switch, or antivalent switching contacts, i.e. only one normally open and normally closed contact per door switch. The secons possibility, however, is only available with the operation modes without additional safety PLC. The connection of the emergeny OFF- circuits and the equivalent protective door contacts to the reset buttons when EDM is selected, is shown on wiring diagram 2/S.39.

AKAS®-LC II F

6a. Rear safeguarding with lightgrid with equivalent switching outputs

	Receiver			
	ULVT	TLVT	ULCT	TLCT
+24V	7	7	1,2, 4	1,2,4
OV	6	6	7	7
OSSD1	3	1	5	5
OSSD2	4	2	6	6

ULVT / TLVT:
Dip-switches (see picture)
-without restart interlock
-without EDM
-OSSD equivalent
ULCT / TLCT:
programming the operation mode of the lightgrid:
-without restart interlock
-without EDM

6b. Rear safeguarding with lightgrid with antivalent switching outputs解 Fiessler light grid EU2K 500/2. Wiring Diagram 7/S.31 shows the connection of the Fiessler light grid EU2K 500/2 as a rear safeguard. In this case, the switches of the lateral protective grids must have antivalent switching contacts (1 normally closed and 1 normally open contact each) and the operating mode with antivalent switching protective door circuits must be selected. In this case, the connector 1 at the transmitter of the EU2K 500/2 must be wired to the output S_EU2K of the AKAS®.

The lateral protective grids are not monitored. Every switching-over of the selector, the reset buttomn must be activated for the Emergency-OFF circuits and the circuits of the lateralprotective doors.

Protective doors and emergency OFFs and light grid EU2K 500/2 for rear safeguarding at operating mode antivalent protective door control pairs with EDM / with monitoring of the foot pedal

Instead of using a rear protective metal grid, a safety light grid with equivalent switching outputs, e.g. type Fiessler ULVT / TLVT or ULCT / TLCT as shown in wiring diagram 6/S.31 is possible.

Protective doors and emergency OFFs and light grid ULVT / TLVT or ULCT / TLCT for rear safeguarding at operating mode equivalent protective door control pairs / with EDM / with monitoring of the foot pedal / with Start interlock for the lightgrid

Only to use the operation modes D...D... or F...F...!
These modes activates Start interlock for the rear safety lightgrid! (see chapter 6.5.2)

7. Installation operating mode, i.e. protection by monitores slow speed without avti-
vated protective field during operation with door monitoring
operation with equivalent switching protective door contacts

A selector switch provides the possibility to choose between operating mode with activated protective field of the AKAS® and fast closing speed or operating mode with protection only by monitored slow speed closing, see Wiring diagrams $8 / \mathrm{S} .32$ und $9 / \mathrm{S} .32$. If the selector switch is activated, the protective field of the AKAS® is muted (bridged). This state is displayed by the shining muting lamp. By disabling of its output SGA , AKAS® requires the NC to carry out only cycles in slow speed, which is monitored by the AKAS®. Given the fact that in this operating mode, only cycles in slow speed are possible, the lateral protective grids are not monitored. Every switching-over of the selector, the reset buttomn must be activated for the Emergency-OFF circuits and the circuits of the lateralprotective doors.
operation with activated protective field of the AKAS® and slow speed closing movement (selector not activated) operation with only protection by monitored slow speed closing movement (selector switch activated)

Wiring diagram 8/S. 32
operation with antivalent switching protective door contacts
operation with activated protective field of the $A K A S ®$ and slow speed closing movement (selector not activated) operation with only protection by monitored slow speed closing movement (selector switch activated)

Wiring diagram 9/S. 32
8. slow speed traverse information

During the operation with slow speed traverse information, the upper receiver elements are only muted if $\mathrm{a}+24 \mathrm{~V}$ signal is given to KAST. This signal is provided by a traverse measuring system (e.g. Fiessler AMS, or NC) which indicates that the traverse has been actually covered. By this, the upper receiver elements remain activated as longh as possible even in the case of a very low slow speed, and intermediate stops during slow speed. By this, even in slow speed range, protection by the AKAS® is provided until the introduction of the operator`s fingers between bending punch and sheet metal is made impossible. Connection: see wiring diagram 10/S.33.
connection with slow speed traverse nformation

wiring diagram 10/S.33
9. selectable switch-over time tolerance of the valve position monitors

AKAS® dynamically monitors the valve position signals, i.e. the individual states of the valve position signals must change within a certain time. The basic tolerances for the switching-over of the valve position monitors from stop state into closing movement and from fast speed movement into slow speed movement or vice-versa can be enhanced by additional 300 ms .

The basic tolerances have the following values:

Switching-over from stopped condition into closing movement after the enabling of the OSSDs: 300 ms , (only with operating mode "Monitored EDM"
Switching-over into the slow speed condition when the start is within the range of the safety point (when $S P=1$): 100 after from the detection of the closing movement consition by the EDM, i.e.. 100 ms after the enabling of the OSSDs during operating mode "without EDM".
Switching-over into the fast speed condition when the start is outside the safety point (when SP = 0): 100 ms after the detection of the closing movement condition by the EDM, i.e. 100 ms after enabling of the OSSDs during operating mode "without EDM".

Switching-over into the slow speed condition, start with request for slow speed (200 ms after SGA $=0$ has been sent to NC): 70 ms after the detection of the closing movement conditin by the EDM, i.e. 70 ms after the enabling of the OSSDs during operating mode "without EDM.".

By the use of 4 Hex switches different operating modes can be selected. The Hex-switches must always be programmed in pairs (1 and 3, 2 and 4). Within each pair, equal values must be programmed.

1. Operating modes without additinal safety control
with / without monitoring of protective doors / monitoring of the emergency off circuits (inputs equivalent)

Hex-switches 1 and 3 Hex-switchpositions	start / stop of closing stroke		Start interlock for the rear lightgrid	overrun traverse control	Monitoring of protective doors / Emergency OFF equivalent switching	Hex-switches 2 and 4 Hex-switchpositions	EDM stop valves monitoring	slow speed traverse information	* switching over tolerance enhancement of the valve position monitors
	Monitoring of the foot pedal antivalent	soft-breaking when the foot-pedal was released							
8	with	with	without	without	without	0	without	without	$+0 \mathrm{~ms}$
						1	without	without	$+100 \mathrm{~ms}$
9	with	without	without	without	with	2	without	without	$+200 \mathrm{~ms}$
						3	without	without	$+300 \mathrm{~ms}$
A	with	with	without	with	without	4	without	with	$+0 \mathrm{~ms}$
						5	without	with	+100 ms
B	with	without	without	with	with	6	without	with	$+200 \mathrm{~ms}$
						7	without	with	$+300 \mathrm{~ms}$
C	with	without	without	without	without	8	with	without	$+0 \mathrm{~ms}$
						9	with	without	$+100 \mathrm{~ms}$
D	with	without	with	without	with	A	with	without	$+200 \mathrm{~ms}$
						B	with	without	$+300 \mathrm{~ms}$
E	with	without	without	with	without	C	with	with	$+0 \mathrm{~ms}$
						D	with	with	+100 ms
F	with	without	with	with	with	E	with	with	$+200 \mathrm{~ms}$
						F	with	with	+ 300 ms

with monitoring of protective doors (inputs antivalent) / monitoring of the emergency off circuits (inputs equivalent)

Hex-switches 1 and 3 Hex-switchpositions	start/stop of closing stroke		overrun traverse control	EDM stop valves monitoring	Monitoring of the protective doors antivalent switching Monitoring of the Ernergency OFF equivalent switching	Hex-switches 2 and 4 Hex-switchpositions	slow speed traverse information	* switching over tolerance enhancement of the valve position monitors
	Monitoring of the foot pedal antivalent	soft-breaking when the foot-pedal was released						
0	with	with	without	without	with	8	without	+ 0 ms
1	with	with	without	with	with	9	without	+100 ms
2	with	with	with	without	with	A	without	+ 200 ms
3	with	with	with	with	with	B	without	+ 300 ms
4	with	without	without	without	with	C	with	+ 0 ms
5	with	without	without	with	with	D	with	+100 ms
6	with	without	with	without	with	E	with	+ 200 ms
7	with	without	with	with	with	F	with	+ 300 ms

[^1]The Hex-switches must always be programmed in pairs (1 and 3, 2 and 4). Within each pair, equal values must be programmed.

2. Operating modes with additional Safety control (e.g.. Safety PLC FPSC)

Hex-switch 1 and 3 Hex-switchpositions	start / stop of closing stroke		overrun traverse control	Monitoring of protective doors / Emergency OFF equivalent switching	Hex-switch 2 and 4 Hex-switchpositions	EDM Stop valve monitoring	slow speed traverse information	* switching over tolerance enhancement of the valve position monitors
	Monitoring of the foot pedal antivalent	inputs for release of closing stroke FUS / FUO						
0	without	equivalent	without	without	0	without	without	+ 0 ms
1	without	equivalent	without	with	1	without	without	+100 ms
2	without	equivalent	with	without	2	without	without	+ 200 ms
3	without	equivalent	with	with	3	without	without	+ 300 ms
4	with	antivalent	without	without	4	without	with	+ 0 ms
5	with	antivalent	without	with	5	without	with	+100 ms
6	with	antivalent	with	without	6	without	with	+ 200 ms
7	with	antivalent	with	with	7	without	with	+ 300 ms

* Attention!

Select always the shortest possible switching over tolerance enhancement of the valve position monitors!
example:

Hex switch	1	2	3	4
Hex switch position	3	1	3	1

Hex-switch 1 and 3 Hex-switchpositions	start/ stop of closing stroke		overrun traverse control	Monitoring of protective doors / Emergency OFF equivalent switching
	Monitoring of the foot pedal antivalent	inputs for release of closing stroke FUS / FUO		
3	without	equivalent	with	with

Hex-switch 2 and 4 Hex-switchpo- sitions	EDM Stop valve monito- ring	slow speed traverse in- formation	* switching over tolerance enhance- ment of the valve position monitors
$\mathbf{1}$	without	without	+100 ms

Displaying of conditions by the Muting lamp

Displaying of conditions by the Ajustment controlLEDs

Ausricht- kontrollen

kontrolien
E3
E1
E2

Adjustment
lamp is out (flashing is hardly recognizable) : during the closing movement the proitective field is at least partially avctivated
lamp is constantly on: The protective field of the AKAS® ist not activated. AKAS® only permits closing strokes in slow speed.
The lamp is flashing slowly about once per second: EDM is not in Stop condition, or the rear reset button must be released, or the press brake must be opened completely in order to quit the slow speed range to enbable the triggering of $\mathrm{SP}=0$.
The lamp is flashing rapidly about five times per second: AKAS® is in interlock stae. Carry out a voltage reset.

LEDs are flashing slowly about once per second: Press has successfully stopped at the cam during the overrun traverse test, only when the cam is free again, the OSSDs can be enabled again.
The ajustment controll-LEDs are flashing slowly until the press brake is not opened completely.
see also page 19

Indicator LEDs

LED is on if box bending funktion is activated

Indicator LEDs for in- and outputs	AKAS®- ...F	AKAS®- ...M
Outputs for release of rear stoppers	LEDs are lit if the rear stoppers are free *	-
Input for Overruntraverse controll	LED is lit if the cam is not activated	-
Inputs for control of protective grids or doors and emergency-off circuits	equivalent protective door contacs: LEDs are lit if all protective door circuits/Emergency OFF circuits are closed. antivalent protective door contacs: NA1 and NA3 are lit, NA2 is dark if all protective door circuits/ Emergency OFF circuits are closed	-
Inputs for press start / stop (release of closing stroke)	$\begin{aligned} & \text { EDMO: stop }=1 / \text { fast speed }=0 / \text { slow speed }=0 \\ & \text { EDMS: stop }=0 / \text { fast speed }=1 / \text { slow speed }=X \end{aligned}$	
Input for stop contactor control	EDMO is lit during STOP state EDMS is lit during downward movement in fast speed	-
Input for safety point	SP is lit if safety point is reached	
Output for demand for slow speed	SGA is lit if fast speed is permitted	
Input for position control in slow speed	antivalent inputs SGO/SGS: $\boldsymbol{s t o p}=$ not $1 / 1$; fast speed=1/0; s equivalent inputs SGO/SGS: stop=1/1 or $0 / 0$; fast speed $=0 / 0$	$\begin{aligned} & \text { speed=}=0 / 1 \\ & w \text { wpeed }=1 / 1 \end{aligned}$

* If the lateral protective doors are open: all other protective doors / protective circuits must be closed. NA1 must be lit. NA2, NA3 must be dark if the protective door contacts are equivalent. If the protective door contacts are antivalent, NA2 must be lit, and NA3 must be dark. If necessary check the contacts). IF the RXOK-LEDs are not lit, activate the RESET-Button(s). If the LEDs still remain dark, open and close all other protective doors / protective circuits , then activate the RESET-Button(s).
If the lateral protective doors are closed: all other protective doors / protective circuits must be equally closed. NA1, NA2, NA3 must be lit if the protective door contacts are equivalent. If the protective door contacts are antivalent, NA1 and NA 3 must be lit, and NA2 must be dark. (If necessary check the contacts). IF the RXOK-LEDs are not lit, activate the RESET-Button(s). If the LEDs still remain dark, open and close all protective doors / protective circuits, then activate the RESET-Button(s).

Status messages, warnings and Error reports via the RS 232 serial interface

Status messages, handling directions for the operator (binary xxxxxx11)
background grey: ((other message or no message, if monitoring functions are partially cancelled)

The AKAS® displays messages by serial transfer via its RS 232 interface; transfer format: 9600 baud, 1 start bit, 8 data bits, 1 stop bit. The messages have even parity and will be repeated at least three times. The time gap between 2 messages is at least 100 ms . At the receiver, defective messages are gated, because only those messages are accpted that fulfil the following conditions: an even parity, successful reception of the message is provided if it is received at least 3 consecutive times and if its complete compatibility to one of the message possibilities indicated below is given.
There are different kinds of messages:

- Information concerning the status of the $A K A S ®$ or handling directions for the operator, here are Bit 0 and Bit $1=1$,
- Warnings concerning errors that, if received three times one immediately after the other, may lead to the interlocking of the AKAS®, here is Bit $0=0$ and Bit $1=1$,
- Error reports of the interlocked $A K A S ®$, here is Bit $0=1$ and Bit $1=0$.

message transferred byte decimal	operating mode	description possible text in the display sy- stem	handling directions
3		front reset button does not enable	verify reset button and cable leading to the normally closed contact of the foot pedal if interrupted
3	antivalent foot pedal inputs without protective circuit monitoring	normally closed contact of the foot pedal does not ena:ble	verify the cable leading to the normailly closed contact of the foot pedal if interrupted
3	equivalent foot pedal inputs	error at the request for release of the closing stroke	check the equivalent switching lines going FUO and FUS . They are evaluated as "different"
7		Mutinglamp does not light up	see message 63
15		Stop at the overrun traverse 'cam	during overrun traverse test
15	without overrun traverse control	-	
23		open the press completely in order to quit the safety point range	if this message is displayed after every pressing and releasing of the foot pedal, check the SP connecting circuit for short circuits
39		release foot pedal	
43		Overrun traverse OK	during overrun traverse test
43	without overrun traverse control		
51		rear reset buuton is defecti've or the EDM is not in Stop status	check rear reset button for short-circuits
51	without EDM	rear RESET button is defective	check rear reset button for short circuit
$5 i$	without protective circuit monitoring	EDM is not in Stop Status	Check EDM Signals
51	without EDM and , without protective circuit monitoring	wrong poetntial at EDMO or EDMS	check the connectors for short circuits
63 83		Mutinglamp does not light up overrun traverse too long	open the press completely. If this message is repeated at the following new stroke and the internal mu:ting lamp does not light up,there is an internal error at 'the version that has no connection option of an exter:nal muting lamp. With the version with external connection option of an external Muting lamp, the connection KAST must be checked for short-circuits on -. during overrun traverse test
83	without overrun traverse control		
95		overrun traverse mearuement has not been carried out	possible reasoin the protective field is interrupted, or 'the protective circuit is interrupted, or the foor pedal is released, or no fast speed during the overrun traverse imeasurement, evtl. because the stroke for the oberrun traverse measurement has not been started by the UDC of the machine. Open the press completely : and carry out a new stroke for the overrun traverse measurement.
95	without overrun traverse control		-

Status messages, handling directions for the operator (binary $x x x x x x 11$)

background grey:

 other message or no message, if monitoring functions are partially cancelled| message transferred byte decimal | operating mode | description possible text in the display system | handling directions |
| :---: | :---: | :---: | :---: |
| 99 | | no overrun traverse test was carried out because of slow speed during overrun traverse test | set the switch-over point onto the normally required position, open the press until the machines reaches its UDC and carry out a new stoke for overrun taverse measurement |
| 111 | | interrupted protective circuit | Release all protective grids and Emergency off buttons |
| 111 | no monitoring of the protective circuit | IInternal error | if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary |
| 119 | | error within the protective circuits, re-disable and enable them | open again ail protective grids and Emergency off buttons and close them again so that a possible bad contact is activated again |
| 119 | no monitoring of the protective circuit | Internal error | if this is displayed again after the voltage reset, a ve: rification by Fiessler Elektronik is necessary |
| 123 | | error within the protective grids, re-open and close them | re-open and close the protective grids so that a possible bad contact is activated again |
| 123 | no monitoring of the protective circuit | Internal error | if this is displayed again after the voltage reset, a ve: rification by Fiessler Elektronik is necessary |
| 131 | | lateral protective grids are open, CLOSE! | close all lateral protective grids |
| 135 | | lateral protective grids are open, i.e. protection by AKAS ® is cancelled, acti- | Press can close only in slow speed |
| 135 | no monitoring of the protective circuit | Internal error | if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary |
| 139 | | error within lateral grids or Emergency-OFF-button, open and close them once | open and close again all lateral protective grids and ; all Emergency-OFF-buttons so that a possible bad contact is activated again |
| 147 | | error within rear grids or Emergency-OFF-button, open and close them once | open and close again all rear protective grids and all : Emergency-OFF-buttons so that a possible bad con'tact is activated again |
| 147 | no monitoring of the protective circuit | Internal error | if this is displayed again after the voltage reset, a verificuation by Fiessler Elektronik is necessary |
| 159 | | Emergency OFF actvated | re-enable emergency OFF button |
| 159 | no monitoring of the protective circuit | Internal error | if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary |
| 163 | | rear protective grid is open | close rear protective grid |
| 163 | no monitoring of the protective circuit | Internal error | if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary |
| 175 | | lateral and rear protective grids are open | close all protective grids |
| 175 | no monitoring of the protective circuit | Internal error | if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary |
| 183 | | activate reset button for the rear protective grid | reset must be actvated after the operning and closing of the protective qrids |
| 183 | no monitoring of the protective circuit | | |
| 187 | | open the press after overrun traverse test | Press has successfully stopped at the cam during the overrun traverse test, only when the cam is free again, the OSSDs can be enabled again The ajustment controll-LEDs are flashing slowlv until the press brake is not |
| 187 | no monitoring of the protective circuit | | |
| 195 | | box bending function is selected | |
| 207 | | bending of flat sheet me- | |
| 215 | | mal m | AKAS@ provides only indirect protection by permit'ting the closing movement only in slow speed |
| 219 | | foot pedal is released | during the closing movement, the foot pedal was re- |
| 231 | | interruption of the protective field | during the closing movement, the protective field was interrupted |
| 235 | | activate emergency-OFFreset of the grids | after the opening and closing of a protective grid, a reset must be carried out |
| 235 | no monitoring of the protective circuit | | |
| 243 | | key switch is activated | Disable key switch. If the same message remains displayed, there is a risk of short-circuiting of the normally open foot pedal contact. |

Warnings (binary xxxxxx10) error reports (binary xxxxxx01)

Warnings issued when several consecutive malfunctions occur that lead to an interlocking of the AKAS with displayed error reports. The interlocking status can be cancelled only by a voltage reset.

Warning transferred decim. byte	error transferred decim.byte	operating mode	description : possible text in the display : system	reason for the error
6	5		EDM does not respond even though the OSSDs ; are released	If this happens during fast sped: valve position monitors do not switch in fast speed position or at an interruption in the EDMS circuit. If this happens during Muting: EDMS and EDMO are both at +24 V
6	5	no monitoring of the protective circuit		
10	9		slow speed signal error	When switching over from fast speed into slow : speed, at SGO remains+ 24 V
10	9	with additional safety PLC (e.g. FPSC)	slow speed signal error	When swithcing over vom fast speed into slow speed, the triggereing of the SGS and the SGO is antivalent instead of equivalent
18	17		machine stops at the :overrun traverse cam/ cam switch does not conduct	in the case of "warning": open press completey, in the case of "error": check cable and cam switch
18	17	overrun traverse control		
30	29		no complete slow speed :position in the Muting :status	This message is displayed when the stroke is istarted in slow speed range or with a slow ispeed request SGA $=0$ and if there is no complete switch-over of the slow speed posi:tion monitors into slow speed. Check the SGA : line for interruptions and check also the slow speed position monitors and their lines.
86	85		Problem release of the rear stoppers	line short circuiting of one RXOX circuit with another line
86	85	no monitoring of the protective circuit	internal error	if this is displayed again after the voltage reset, a verification by Fiessler Elektronik is necessary
90 / 102	$89 / 101$		Problem fast speed -slow speed request	line short circuiting of the SGA circuit with another line
106	105		fast speed/slow speed signals are faulty in stop status	during operation without safety PLC, both EDMS and EDMO are at +24 V at the same time in stopped status.
106	105	with additional safety PLC (e.g. FPSC)	fast speed/slow speed signals are faulty in istop status	The triggering of the SGS and the SGO is antivalent instead of equivalent
114	113		OSSD- error	line short circuiting of the OSSD circuits with other lines
126	125		short circuit of the the muting lamp line	only possible at the version with external Muting lamp, otherwise: internal problem
130	129		problem at request for higher switchover point:	line short circuiting of the HUSP circuit with other lines
142	141		Muting lamp should not : light up, release box bending button	short circuit in box bending button or line short circuiting of the KAST circuit with other lines
150	149		problem at pressing of foot pedal	line short circuiting of the foot pedal circuits FUO and FUS with other lines
166	165		Hex switches deadjuisted	Readjust the Hex switches onto the selected operating mode, then carry out a voltage reset. If the error repeats itself, a repair by Fiessler Elektronik is necessary.
170	169		invalid Hex switch position	Turn HEX switch into a permitted position
198	197		external transmitter signals are received	The transmitter is triggered although the foot ; pedal is released, or a transmitter from anot:her AKAS® focuses the receiver. This must be : prevented by adequate constructional measu'res.
interlocking without prior warning	201	with additional safety PLC (e.g. FPSC)	unequal slow speed connections	This error happens only during the operating mode "for connection to safety PLC" if the signals at the SGO and the SGS are not exactly the same.
interlocking without prior warning	237		disable key switch : voltage reset	The key switch ot the front reset switch have been activated when the foot pedal was pressed, or there is an error within the foot pedal, or the front reset button does not close.
246	245		internal error	If this message is displayed immediately after a voltage reset, there is an EMC problem or an internal failure of the appliance.

ELEKTRONIK

Service

If you have questions that cannot be answered by reading this operation instruction manual, please contact us directly.
When calling, please have the following dara ready:
-Exact unit type and model
-Serial number(s)
-Symptom of the malfunction and/or fault description

Fiessler Elektronik GmbH \& Co. KG
Kastellstraße 9
D-73734 Esslingen

Phone: 0711/919697-0
Fax: 0711/919697-50
E-mail info@fiessler.de

Maintenance

The transmitter- and receiver lenses should be cleaned with a soft cotton swab at least once a month.
The press brake protection systems AKAS® are maintenance-free.
On request by the customer, Fiessler Elektronik GmbH \& Co. KG carries out the acceptance test and annual inspections. In addition, seminars providing customers with training in annual inspections are held at regular intervals.

Warranty

The company Fiessler Elektronik GmbH \& Co. KG refuses to accept any warranty claims if the device has been opened or if it has been modified.

Returning a unit

If, in the case of default, the necessity of returning the unit to Fiessler Elektronik arises, it will be very advantageous for a fast default diagnosis if the following topics are observed and observed:

```
-exact description of malfunction:
-did you frequently notice malfunctions at the machine where the light curtains are installed?
-any defaults or malfunctions in the past?
-etc..
-which operating mode has been used with this unit?
```

The more exactly the malfunction is described, the more accurate and faster we can determine it and repair it.

ELEKTRONIK

Inspection Sheet
No.:
Date:

Inspection of a press brake safeguarded by a press brake protection system AKAS®

1. Inspection:
\square first inspection
regular inspection \square maintenance contract existing
\square regular inspection requested
2. Installation:
detection range: \qquad m optional swivable holder at:
\square transmitter $\quad \square$ receiver

3. Visual Inspection of the Installation

3.1 correct electric connection 3.10 max . work speed: mm / s
3.2 cables damage free
$\square 3.3$ strain relief at both sides of cable loop
$\square 3.4$ cable protected against all mechanical damages by metal sheet
3.11 max. fast speed: _ $\quad \mathrm{mm} / \mathrm{s}$3.5 correct position of vertical light grid (not too far behind from bending line)
$\square 3.6$ correct position of vertical light grid (distance sufficiently behind the bending line)
$\square 3.7$ transmitter beams are parallel to the ram
$\square 3.8$ work speed $<10 \mathrm{~mm} / \mathrm{s}$
$\square 3.9$ test with test rod passed
After viewing of the electrical diagrams, the electrical integration of the AKAS® can be accepted as safe according to safety class 4 EN 954T.1, under the condition that the machine control is wired exactly as shown in the said diagrams.

4. Cooperation between the AKAS® system and the machine

\square 4.1 The stopping of the AKAS® during the dangerous movement complies with the safety level of safety category 4 $\square 4.2$ control elements: OK
$\square 4.3$ closing movement during foot operated motion with AKAS® only possible when foot pedal remains pressed down $\square 4.4$ interruption of the AKAS® during fast speed: OK
$\square 4.5$ interruption of the AKAS® during work speed: OK
$\square 4.6$ operation mode "foot-fast motion" is possible only when AKAS® is activated
$\square 4.7$ AKAS® is switched off in all operation modes where AKAS® is not activated
4.8 Muting signal is given if the gap above metal sheet corresponds to distance between „lower edge E2 and tool tip+2mm" 4.9 Muting signal from valve position signal during work stroke or AMS
4.10 Muting signal monitored by LSUW N1 Muting K switching unit , safety PLC or machine control.
4.11 Muting signal monitored by machine control

Muting point in mm:

$\square 4.21$ PLC input is controlled by ESPE output.4.22 Muting signal unsafe
4.23 Safety level of the following machine control is lower than ESPE4.24 Secondary control is single channel4.30 The protective effect might be cancelled by a malfunction of the press.

If tops 3 and 4.1-4.10 are not completely ticked, or if one or more of the tops 4.21-4.24 are ticked, the AKAS® installation is not in a faultless condition. In this case, the protective effect by the system is not completely provided.

5. Comments

Inspection Badge: \quad O badge issued \quad O badge not issued

The inspection refers only to the functionality check of the $A K A S ®$ according to the regulations. It does not replace the safety check of the machine itself. All modifications of the AKAS® or of the machine may impair the protective effect of the AKAS®. In this case, the inspection must be repated.

GESCHÄFTSLEITUNG

Konformitätserklärung

(gemäß Anhang II 1 A 2006/42/EG)

Wir

Fiessler Elektronik
Kastellstr. 9
D-73734 Esslingen,
erklären in alleiniger Verantwortung, daß das Produkt
AKAS LC II M und AKAS LC II F Berührungsloswirkende Schutzeinrichtung Typ 4 nach EN 61496-1 zur Absicherung des Gefahrenbereiches von Abkantpressen nach EN 12622.
auf die sich diese Erklärung bezieht, mit den folgenden Normen oder normativen Dokumenten übereinstimmen:
EN 61496-1:2008, IEC 614962:2006, EN 12622 (Final Draft 2009), EN ISO 13849-1:2008, EN62061_2005

Gemäß den Bestimmungen der Richtlinie
2006/42/EG
2004/108/EG
Die Schutzziele der Niederspannungsrichtlinie (2006/95/EG) wurden gemäß Anhang I, Nr. 1.5.1 der Maschinenrichtlinie eingehalten.

Die Geräte entsprechen der Laserklasse 1

Declaration of conformity

(according appendix II 1 A 2006/42/ EG)

We

Fiessler Elektronik
Kastellstr. 9
D-73734 Esslingen,
declare under our sole responsibility that the product
AKAS LC II M and AKAS LC II F electro-sensitive protective equipment type 4 according to EN 61496-1 for protecting the dangerous area of pressbrakes according to
EN 12622.
to which this declaration relates is in conformity with the following standards or other normative documents:
EN 61496-1:2008, IEC 614962:2006, EN 12622 (Final Draft 2009), EN ISO 13849-1:2008, EN62061_2005
following the provisions of Directive
2006/42/EG
2004/108/EG
The protection goals of the Low Voltage Directive (2006/95/EC) have been complied with in accordance of Annex I No.1.5.1 of the Machinery Directive.

The products are conform with the laser class 1

Modèle recommandé de déclaration de conformité

(conforme appendice II 1 A 2006/42/ EG)

Nous
Fiessler Elektronik
Kastellstr. 9
D-73734 Esslingen,
déclaration sous notre seule responsabilité que le produit
AKAS LC II M et AKAS LC II F Dispositif de protection électrosensible type 4 suivant EN 61496-1 pour la protection des zones dangereuse des presses plieuses suivant EN 12622.
auquel se réfère cette déclaration est conforme aux normes ou autres documents normatifs:

EN 61496-1:2008, IEC 614962:2006, EN 12622 (Final Draft 2009), EN ISO 13849-1:2008, EN62061_2005
conformément aux dispositions de Directive
2006/42/EG
2004/108/EG
Les objectifs de protection de la directive "basse tension" (2006/95/CE) ont été respectées conformément à l'annexe I $n^{\circ} 1.5 .1$ de la directive Machines.

Les produits sont conforme avec la classe laser 1

Folgende benannte Stelle hat eine positive Erklärung ausgestell.

Kennnummer der benannten Stelle 0044
Prüfbescheinigung No 4420510381328
Name und Anschrift:
TÜV NORD CERT GmbH
Langenmarkstrasse 2045141 - D Essen
Esslingen, den / the / le 01.12.2009

Götz Fiessler / Geschäftsführer / Dokumentationsbevollmächtigter / managing director / authorized for documentation / gérant / mandataire de la documentation

ELEKTRONIK

Electrosensitive protective The press brake protection AKAS® is an electrosensitive protective device (ESPE).
equipement ESPE is characterised by the fact that a hazardous motion becomes interrupted or prevented if the light beams produced between the transmitter and receiver unit are interrupted.

Safety category 4 AKAS \circledR^{\circledR} meets Safety Category 4 according to EN 954, e PL (Performance Level) according to EN ISO 13849-1:
PL e, SIL3 2008 and SIL 3 according to EN 62061:2005 Devices to safety category 4, PL e, SIL 3 are self-monitoring sensitive protective equipment and provide the highest Safety class among the sensitive protective equipment.

Self-monitoring The electrosensitive protective device (ESPE) switches automatically into the "safe state" when it is faulty.

Standard Installation range Maximum distance between transmitter and receiver is 6 m (For longer range please get in contact with Fiessler Elektronik or your local dealer).

Overrun The part of the hazardous motion still taking place after interrupting the light beam.

Overrun traverse The distance covered during the overrun (e.g. by the ram of a press).

Overrun period The duration of the overrun traverse.
Response time The time that elapsed after light beam interruption until the switching action occurs.
Valve or contactor control Before every release of the output contacts the contactor control is checking whether the switching elements connected (relays, contactors or valves) have been released. A renewed release of the output contacts is only possible if the switching elements connected have been released. Thus a dangerous failure of switching-elements (relays, contactors or valves) caused by the hazardous motion is prevented.

Start interlock After initial operation or after a power supply interruption a renewed "enabling" is blocked by the start interlock. The renewed release of the switching unit is only possible by closing and opening of the start entry.

Restart interlock The restart interlock prevents any automatic releasing of the switching outputs after an interruption and re-enabling of the light beam (e.g. when penetrating the light beam).

Muting Short-time safe by-pass of the press brake protection $A K A S ®$ during material movement, i.e. during a plate bending process.

Box-bending By-pass of the receiver unit E1 during a box-bending process.

Service

As a special feature for training our customers, Fiessler Elektronik offers one-day safety workshops.
Our service team provides you with expert advice and information for the reliable integration of our safety equipment into your machine.

HOMOLOGATIONS

In order to ensure and maintain the high quality level of the Fiessler safety products, a quality control security system has been established early. Fiessler Elektronik holds the DIN ISO EN 9001 Certificate and, thanks to the company-owned EMC laboratory, all products must pass a inspection without exception before they leave the company. All safety equipment comply with the applicable national and international standards. Development and Design is made in close cooperation with the German employer`s liablility insurance associations. All homologations are obtained only after having passed strict tests by the German surveyor organisation TÜV.

AWARD OF

APPRECIATION

for exemplary performance in the development of the press brake protection system AKAS.
The award was bestowed upon Fiessler Elektronik by the ministry of trade and commerce of the federal state of Baden-Württemberg.
 nach DIN ISO 9001:2000

Fiessler Elektronik

GmbH \& Co. KG

Kastellstr. 9

D-73734 Esslingen
Telefon: ++49(0)711-91 96 97-0
Fax: $\quad++49(0) 711-9196$ 97-50
Email: info@fiessler.de
Internet: www.fiessler.de

Fiessler Elektronik has representations in all major industrial nations.

[^0]: If the press does not posssess any position-monitored contactors for the seitch-over from fast speed into slow speed, a safe integration is possible using the Fiessler AMS-System.

[^1]: * Attention!

 Select always the shortest possible switching over tolerance enhancement of the valve position monitors!

